
1

Dynamic Semantic Interoperability and its
Verification & Validation in C2 Systems

W. T. Tsai, R. Paul*, Hai Huang, Bingnan Xiao, Yinong
Chen

Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287-8809

*OSD NII, Department of Defense, Washington, DC

2

Introduction

• Interoperability is defined as
– The ability of two or more systems or components to

exchange information and to use the information that
has been exchanged.

• Interoperability is a critical issue for DoD C2
systems.

• Particularly, the recent emphasis on Network-
Centric Warfare (NCW) placed interoperability as
a priority item.

3

Introduction (Cont.)

• In spite of extensive studies on interoperability, the focus
has been mostly on:
– Data interoperability including data schema, meta-data, and

database integration;
– XML, such as using XML to represent data schema and as a means

for data interoperability;
– Ontology as a means for concept representation used for

specification and matching; and
– Service-Oriented Architecture (SOA) and other related

technologies such as standard protocols (SOAP, UDDI, and etc.),
interface definitions (WSDL, OWL-S, and etc.), registration and
publication of interfaces, wrapper, automated composition.

4

Introduction (Cont.)

• While these studies are important and useful, they
have not addressed other important issues on
interoperability, namely
– Semantic interoperability:

• How can C2 systems or services actively collaborate to achieve
a mission (not just exchange data)?

– Interoperability verification and validation particularly
related to semantic interoperability:

• How can we know the semantic interoperability meet the
specification?

5

General Semantics and Semantic
Interoperability

6

General Semantics and Semantic
Interoperability (Cont.)

• Semantics defines the meaning of the constructs of
a language, or what happens during the execution
of a program or program part.

• Current research on ontology belongs to semantics
because it deals with the context match of
terminologies such as synonyms based on
taxonomy of a language.

• However, ontology is only a part of the general
semantics.

7

Semantic Interoperation

• Semantic interoperation
– Deals with how the participating subsystems

will interact with each other.
• Workflow;
• Data range; and
• Timing.

• Semantic interoperability can be
– Represented as constraints; and
– Implemented by policy based computing

8

DoD C2 Requirements
• Future DoD C2 systems

– Not only need to exchange data and interoperate with their fellow C2
systems with respect to data,

– but also need to collaborate with other C2 systems in terms of tasks and
missions.

• While the current interoperability technologies such as standard
interface and ontology are critical for semantic interoperability, they
are not sufficient because:
– The current interface technologies provide method signatures only for a

single service.
– These method signatures do not provide sufficient information for another

new system or user to properly use the service, e.g.
• What is the proper calling sequence among methods of this service
• What is the dependency among methods of a service or another service.

9

Scenario-based System Semantic
Interoperability

• Following the concept of SOA, each sub-system in the
composed complex system
– Is a self-contained autonomous system;
– Provides services;
– Collaborates with each other; and
– Loosely couples with other systems.

• To achieve interoperability, each system needs to be able
to
– Exchange data and services in a consistent and effective way.
– Provide universal access capacities independent of platforms.

10

Scenario-based System Semantic
Interoperability (Cont.)

• To fully achieve interoperability, handling the data
exchange only is not sufficient because:
– Data exchange is a small part of interoperability only;
– Systems need to interact with each other at run-time;
– One system may use the services provided by others; and
– Systems may need to work with legacy systems.

• To make heterogeneous systems working with each other,
we need to have a framework which provides support for
– Platform independent system service specification,
– System wrapping for legacy systems, and
– System composition and re-composition.

11

System Service Specification
• For different systems to be interoperable with each other,

system's service specification needs to conform to a
common standard.

• System service specification is a system profile which
provides information of what the system is. The profile
includes following information:
– Interface Specification

• Describes the calling parameters and return values of the system.
• The ACDATE model in E2E automation provides the capability for

interface specification
– System Scenario & Use Scenario

• Describe how the system works and how to work with this system.

12

ACDATE / Scenario Overview
• The ACDATE modeling specification

– A language for modeling and specification in the domain of system
engineering and software engineering.

– It facilitates the specification, analysis, simulation, and execution of the
requirement and therefore the system.

• A Scenario is a semi-formal description of system functionality
– It is a sequence of events expected during operation of system products

which includes the environment conditions and usage rates as well as
expected stimuli (inputs) and response (outputs).

• ACDATE entities are the building blocks for Scenario specification.
– After one’s system requirements have been decomposed into ACDATE

entities, one can then specify Scenarios.
• This ACDATE/Scenario model allows for system modeling and

provides the capability to perform various analyses of requirement
V&V.

13

Use Scenarios

• Use scenarios
– The use scenario is an extension to UML’s use case and

David Parnas’ concept of use.
– It specifies how a service or system is used by other

services or systems.
– It focuses on the work flow part of the semantic

interoperability.
– It defines how a particular function can be used in a

stepwise fashion.
• Current interoperability definition of systems mainly specifies

the functions and the syntax of calling the services.

14

Use Scenarios vs. System Scenarios

• A system scenario describes the behavior of a
system when the system is activated with a
specific input,

• A use scenario describes a possible sequence of
actions to activate a service provided by the
system.
– The use scenario, once specified, can greatly reduce the

time needed for C2 systems to collaborate by properly
calling each other in the specified order.

15

Use Scenario Specification -- Syntax
& Semantics

• structural constructs:
– choice{ option[] option[] … option[] }:

• choice means that the interoperation can select any single sub-scenario (listed
as options) to continue the control flow.

– {} precond:
• precond indicates the preconditions before a particular action

– postcond {}:
• postcond indicate the postconditions after a particular action

– criticalreg {}:
• criticalreg indicate a critical region such that no other actions can take place to

interrupt the execution of actions within the critical region. Any action
sequence outside a critical region can be intervened by any sub-scenario.

– <>:
• Any entities enclosed by <> are parameter entities.

• With sub-scenarios, the use scenario can describe the interoperation of
hierarchical systems in different levels.

16

Use Scenario Analyses

• With the use scenario specified, we can perform
– Automated interoperation scenarios generation
– Interoperation scenario correctness checking
– Interoperability cross checking

• With the support of the analytic techniques
mentioned above, users can verify the correctness
of use scenario.
– This can further enhance the semantic interoperability

of systems.

17

Automated Interoperation Scenarios
Generation

• If more than one systems specified with use
scenarios are to be put together to compose
a complex system, the interoperation
scenarios can be generated by intervening
the use scenarios for individual systems.

18

Interoperation Scenario Correctness
Checking

• There will be quite a lot of interoperation scenarios can be
generated or specified by intervening the individual use
scenarios for different subsystems.

• But not all generated interoperation scenarios are correct
sequence according to the constraints specified.

• By the constraints checking we can identify the
interoperation scenarios that do not satisfy the constraints.
– precondition checking;
– postcondition checking; and
– critical region checking.

19

Interoperability Cross Checking

• The constraints may be specified in
different use scenarios.

• If one wants to put the systems together, the
interoperability cross checking needs to be
done to identify potential inconsistencies.

20

Use Scenario Example

• This example use scenario is specified for a
control system that is in charge of battle tank in a
C2 system
– The system Tank has 5 functions:

• Start
• Move
• LocateTarget
• Fire
• Stop

– The system BattleControl has 1 function:
• OrderToFire

21

Use Scenario Example (Cont.)

• Use scenario for Tank:
do ACTION:Tank.Start
choice {

option [
do ACTION:Tank.Move

]
option [

do ACTION:Tank.LocateTarget
]
option [

do ACTION:Tank.Fire
]

}
do ACTION: Tank.Stop

22

Automated Interoperation Scenarios
Generation

• If more than one systems specified with use
scenarios are to be put together to compose
a complex system, the interoperation
scenarios can be generated by intervening
the use scenarios for individual systems.

23

Automated Interoperation Scenarios
Generation -- Example

• Automated generated interoperation scenarios:
– < Start, Move, Stop>,
– < Start, LocateTarget, Stop >, and
– <Start, Fire, Stop >.

• When interoperate with BattleControl, following
interoperation scenarios can be generated:
– < Start, BattleControl.OrderToFire, LocateTarget, Stop

>
– < Start, LocateTarget, BattleControl.OrderToFire, Stop

>

24

Interoperation Scenario Correctness
Checking

• There will be quite a lot of interoperation scenarios can be
generated or specified by intervening individual use
scenarios for different systems.

• But not all generated interoperation scenarios are correct
sequence according to the constraints specified.

• By the constraints checking we can identify the
interoperation scenarios that do not satisfy the constraints.
– Precondition checking;
– Post-condition checking; and
– Critical region checking.

25

Updated Use Scenario Example
• The use scenario is updated by adding a Critical Region .
• Updated use scenario for Tank:

criticalreg {
do ACTION:Tank.Start
choice {

option [
do ACTION:Tank.Move
]
option [
do ACTION:Tank.LocateTarget
]
option [
do ACTION:Tank.Fire
]

}
}
do ACTION: Tank.Stop

26

Interoperation Scenario Correctness
Checking -- Example

• With the Critical Region constraint specified for the
Tank use scenarios, not all interoperation scenarios are
correct.

• Interoperation scenario for Tank and BattleControl:
– < Start, LocateTarget, BattleControl.OrderToFire, Stop > is a

correct interoperation scenario.
– < Start, BattleControl.OrderToFire, LocateTarget, Stop > is

NOT a correct interoperation scenario.
• BattleControl.OrderToFire can not be put in the section tagged as

criticalreg.

27

Interoperability Cross Checking

• The constraints may be specified in
different use scenarios.

• If one wants to put the systems together, the
interoperability cross checking needs to be
done to identify potential inconsistencies.

28

Updated Use Scenario Example
• The use scenario is updated by adding Preconditions .
• Updated use scenario for Tank:

do ACTION:Tank.Start
choice {

option [
{do ACTION:<Security>.VerifyPassword} precond

do ACTION:Tank.Move
]
option [
{do ACTION:<Security>.VerifyPassword} precond

do ACTION:Tank.LocateTarget
]
option [
{do ACTION:<Security>.VerifyPassword} precond

do ACTION:Tank.Fire
]

}
do ACTION: Tank.Stop

29

Use Scenario Example (Cont.)

• The use scenario for security control system
is:
do ACTION:Security.VerifyPassword postcond
{

do ACTION:<Tank>.Move
do ACTION:<Tank>.Fire

}

30

Interoperability Cross Checking --
Example

• In the use scenarios specified above, system Tank requires verifying
password before all following operations on the Tank:
– Move
– LocateTarget
– Fire

• Security enables Fire and Move after verifying password, without
mentioning LocateTarget.

• A cross checking shows a potential inconsistency, which is not
necessary an error.
– Either Account enforces an unnecessary strong precondition on

LocateTarget,
– Or Security enables an insufficient weak post-condition on

VerifyPassword.

31

Extended Use Scenario
• Use scenarios are useful for efficient system

composition. Yet, additional information can be
added to use scenario to improve the system's
selection and composition effectiveness and
scalability.

• The following information can be added:
– Dependency information;
– Categorization; and
– Hierarchical use scenarios.

32

Dependency Information
• In addition to the information specified in use scenarios for

how to use the given system, it is useful to add dependency
information.

• Dependencies Specification
– Describes other systems that need to be included for this system to

function. Compatible components list

• Compatible components list
– A list of other systems that are known to be able to work with the

system.
– With this list, the system composition and re-composition can be

done more efficiently.

33

Dependency Information --
Example

• For an aircraft carrier:
– Dependencies: Destroyer, Frigate, and Submarine.
– Compatible components: Helicopter, Fighter plane, and

Scout.
• With the information specified above, the

composition process will be greatly eased.
– When putting an aircraft carrier into a C2 system, users

will know that the destroyer, frigate and submarine are
also needed.

– From information above, the users will know it is
compatible to put helicopters, fighter planes, and scouts
on the aircraft carrier but not the battle tanks.

34

Categorization
• For better organization, the use scenarios need to be

categorized since
– A system can provide multiple services.
– Different services provided by the system may have different

use scenarios.
– A system working with different systems may have different

use scenarios.
• A set of use scenarios describing the usage of one specific

service provided by this system can be put into the same
category.

• Each system can be assigned with a category tree of use
scenarios.

35

Categorization -- Example

• In a C2 system, there is usually a command center
which controls the overall battle.

• Since multiple units, say Fleet 1, Fleet 2, and Fleet
3, are all involved in the battle, the command
center needs to coordinate the battle and provides
services for the Fleets, respectively.

• To better organize the design, the use scenarios
must be categorized accordingly.
– Use scenarios for Fleet1
– Use scenarios for Fleet2
– Use scenarios for Fleet3

36

Hierarchical Use Scenario

• Use scenario can be hierarchical.
– A higher level use scenario can call lower level

use scenarios.
– A higher level use scenario may specify the use

of more than one subsystem.
• The high level use scenario specifies the overall

process and can be broken down into several low
level use scenarios by scenario slicing.

37

Hierarchical Use Scenario --
Example

• In the service provided for the Army in the command
center, it controls the battle on ground.
– The use scenarios are specified to coordinate infantry and battle

tanks.
• The use scenario hierarchy:
– Use scenarios for command center
• Use scenarios for army

– Use scenarios for infantry
– Use scenarios for battle tanks

• In this case, the use scenario in the command center
invokes the Army use scenarios which in turn invokes the
use scenarios specified for infantry.

38

System Composition

• Complex mission often requires collaboration
among multiple participating systems.

• Each participating system (subsystem) in a
complex system (system of systems) focuses on
handling one aspect of the overall mission.

• It is important for each subsystem to be specified
with system scenarios as well as use scenarios.

39

System Composition Approach

• The bottom-up approach can develop a new
composite system once the system scenarios and
use scenarios are known.
– With system scenarios, multiple analyses (dependency

analysis, C&C analysis, event analysis, simulation,
model checking) can be done to evaluate the system.

– Automated system testing and verification with
verification patterns can provide us with confidence of
the quality assurance of the selected system.

– Once we have verified and validated the individual
subsystems, we can build complex system on top of
them.

40

System Composition Approach (Cont.)

• The system discovery and selection can be done
by analyzing the system scenarios.

• Compose the individual subsystems into the
complex system by connecting the systems
according to the use scenarios.

• If a use scenario calls the use scenarios of
subsystems, it specifies the interoperation among
several different subsystems.
– In this case, the use scenarios play the role of system

composition pattern.

41

System Composition Example

42

System Composition Example (Cont.)

• The System 1 shows a complex system 1 with three
subsystems.
– System A, B and C.

• Each system is specified with system scenarios and
use scenarios.
– System scenarios for each subsystem provide information on

what services this system provides.
– Each subsystem is specified with use scenarios, the

integration becomes possible.
• If we have interface information only for systems A, B, and C, we may

not obtain the functionalities required by system 1 because we do not
know how to call the interfaces of each subsystem.

43

System Composition Template
• A use scenario can have templates (patterns).

– In such a template, we may specify what functionalities we need.
– If a system provides the functionalities specified in the system

scenario, it can be used as subsystem.
• In the system 1 composition figure:

– There are three subsystems, system A.1, A.2, A.3 provides the same
functionalities.

– Each of these subsystems can be a valid candidate for the
composition.

– These subsystems may be ranked with different criteria by the
automated testing tools.

– Appropriate subsystem can be added to the composition system
according to different system performance requirements.

– What system to be chosen will be decided at the system run-time
(Dynamic Binding).

44

Use Scenario / System Scenario
Conversion

• Use scenarios for a low-level subsystem can be converted
to system scenario for a high-level system.

• In the example:
– When the use scenarios of system A, B, and C are combined

together, we can generate system scenarios of system 1.
– Also, use scenarios for the system may be generated automatically

or be specified by system designers.
– With the system scenarios and use scenarios for system identified,

we can build a high level system using the system as subsystem.

45

System Re-composition

• After a complex system is composed using subsystems, it
may be re-composed statically or dynamically.
– Re-composition is needed when a subsystem is considered as

not satisfying
• Replacing the individual subsystems
• Adding new subsystems.

• The re-composition still needs to follow the specification
in the use scenarios.

• Once a system is re-composed, it can be deployed rapidly.
• It is possible that the users can add a new subsystem into

the composed system or remove and / or replace a non-
active subsystem in the system runtime.

46

Summary

• Semantic interoperability extends the general
semantics beyond the concept of ontology.

• Once a system is specified with use scenarios, it
can be used by other systems by simply following
the steps defined in the use scenarios.

• The analysis capabilities included in the use
scenarios can be used to automatically verify and
validate the correctness of system composition,
which significantly increases the confidence and
reduces the effort to verify and validate the system.

