

1

Dynamic Influence Nets: An Extension of Timed Influence Nets for Modeling Dynamic Uncertain Situations

Sajjad Haider Alexander H. Levis

June 14, 2005 10th International CCRTS, McLean VA

- Technical Background
 - Influence Nets
 - Timed Influence Nets
- Limitations of Timed Influence Nets
 - Different sequences of Actions have no impact on the final probability of achieving a desired effect
 - Influences are assumed to be time-invariant
- Proposed Methodology
 - Adding memory to the nodes in a TIN
 - Modeling of time-varying influences
- Dynamic Influence Nets
- Conclusions

Influence Nets

SAL

- A set of random variables that makes up the nodes of an IN. All the variables in the IN have binary states.
- A set of directed links that connect pairs of nodes.
- Each link has associated with it a pair of parameters that shows the causal strength of the link (usually denoted as h and g values).

Positive Impact

Negative Impact

Probability Propagation in Influence Nets

- $P(A) = P(A|\sim B,\sim E)P(\sim B)P(\sim E) + P(A|\sim B,E)P(\sim B)P(E) + P(A|B,\sim E)P(B)P(\sim E)$ + P(A|B,E)P(B)P(E) $= 0.005 \times 0.95 \times 0.99 + 0.95 \times 0.95 \times 0.01 + 0.95 \times 0.05 \times 0.99 + 0.99 \times 0.05 \times 0.01$
 - = 0.06

EORGE

- $P(D) = P(D|\sim E,\sim A)P(\sim E)P(\sim A) + P(D|\sim E,A)P(\sim E)P(A) + P(D|E,\sim A)P(E)P(\sim A)$
 - + P(D | E, A)P(E)P(A)
 - = 0.05 x 0.99 x 0.94 + 0.95 x 0.99 x 0.06 + 0.001 x 0.01 x 0.94 + 0.05 x 0.01 x 0.06
 - = 0.11

Specification of a Timed Influence Net

The specification of a TIN require the following additional parameters besides the one required for by an ordinary IN:

A time delay is associated with each arc.

A time delay is associated with each node.

Each actionable event is assigned time stamp(s) at which the decision(s) regarding the state of that action is(are) made

Problem Statement

Given

- □ A Dynamic Uncertain Situation
- □ A Set of Desired Effects
- □ A Set of Actionable Events
 - How to capture certain dynamic situations
 - Modeling of time-varying influences
 - Strength of the influence changes over time
 - Influence vanishes over time
 - Modeling of memory to help in identifying
 - Impact of repetitive actions on the desired effects
 - Impact of different sequence of actions on the desired effect

Time-Varying Influence (Persistence of Influence)

- Current implementation of TINs models time-invariant influences
- A scheme is proposed for modeling time-varying influences
- A list of influences along with their time of effect is specified for each arc in a TIN
- The proposed scheme can be used to model time-dependent structural changes in a TIN

Influence of A on C when information at A is t time units old Strong: $2 \le t < 4$ Moderate: $4 \le t \le 6$ Low: t > 6

Influence of B on C when information at B is t time units old Strong: $1 \le t < 3$ Low: t > 3

Time-Varying Influence (Cont'd)

Influence of A on C when information at A is t time units old Strong: $2 \le t \le 4$ Moderate: $4 \le t \le 6$ Low: $t \ge 6$

Influence of B on C when information at B is t time units old Strong: $1 \le t < 3$ Low: t > 3

- C is updated at time: 6, 8, 11
- At time 6: P(A) @ 4 is used, while P(B) @ 0 is used
 - Information coming from A is 2 time units old
 - Information coming from B is 6 time units old
 - C has strong influence of A and low influence of B at time 6
- At time 8: P(A) @ 4 is used, while P(B) @ 7 is used
 - Information coming from A is 4 time units old
 - Information coming from B is 1 time units old
 - C has moderate influence of A and strong influence of B at time 8

Non-Stationary Conditional Probabilities

Influence of A on C when information at A is t time units old Strong: $2 \le t < 4$ Moderate: $4 \le t \le 6$ Low: t > 6

Influence of B on C when information at B is t time units old Strong: $1 \le t < 3$ Low: t > 3

		Time	
Parents Combination	6	8	11
P(C ⊣A,⊣B)	0.07	0.85	0.93
P(C ¬A, B)	0.03	0.02	0.03
P(C A,¬B)	0.97	0.98	0.97
P(C A, B)	0.93	0.15	0.07

Problem Statement

Given

- □ A Dynamic Uncertain Situation
- A Set of Desired Effects
- A Set of Actionable Events
 - How to capture certain dynamic situations
 - Modeling of time-varying influences
 - Strength of the influence changes over time
 - Influence vanishes over time
 - Modeling of memory to help in identifying
 - Impact of repetitive actions on the desired effects
 - Impact of different sequence of actions on the desired effect

Adding Memory to the Nodes in a TIN

- Current implementation of TINs assume that the nodes are memoryless
 - The impact of different sequences of actions is not captured.
- An approach is proposed that adds memory to the nodes in a TIN
 - A self-loop is added to each node whose current state is dependent on its previous state.

Adding Memory to the Nodes in a TIN (Cont'd)

💤 Probability Profile for C - 🗆 × 🚑 Probability Profile for C _ U × 1.0 1.0 0.9 0.9 0.8 0.8 A в 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 С 0.3 0.2 0.2 (0.90, -0.90)0.1 0.1 Strong Memory 0.0 12 14 16 0.0

Dynamic Influence Nets

- Extended the knowledge elicitation interface of TINs so that they can capture time-varying cause-effect relationship
 - Instead of providing a single-valued strength of cause-effect relationship, a system modeler can specify multi-valued strengths of cause-effect relationship along with their time of effectiveness
- Added a mechanism to incorporate memory in a TIN to capture the impact of repetitive actions and different sequence of actions on the desired effect
 - A self-loop is added to a node that captures memory of the node
 - The strength of the self-loop specify whether the modeled memory is weak or strong
- Together these two features capture the impact of repetitive actions

Questions?