

Lessons Learned in Applying Architecture to the

Acquisition of Air Force Command and Control Systems

Murray E. Daniels
AF Electronic Systems Center Chief Architect
The MITRE Corp.
Burlington Rd, Bedford MA 01730
781 377 9648
mdaniels@mitre.org

Ruth E. Sespaniak
Principle Information Systems Engineer
The MITRE Corp.
Burlington Rd, Bedford MA 01730
781 377 8269
res@mitre.org

Abstract

At the Air Force Materiel Command Electronic Systems Center, we are using
architecture in multiple programs to support the acquisition of Air Force Command and
Control systems. This use ranges from informally augmenting traditional requirements
documents to actually delivering architecture products to the contractor as a formal
representation of requirements. We also use architecture to ensure that programs better
understand their operational and system context within the enterprise. The architecture
activities described in this paper span the timeframe from 1997 to the present. During
that time, we've had varying degrees of success. On the one hand, we’ve found the
architecture to foster significant communication between the user, the acquirer, and the
developer – mostly by having operational subject matter experts work directly with the
acquirer and contractor in developing parts of the operational architecture views. In
general, we have found that the use of a disciplined approach to architecture helps all
stakeholders better understand the operational, system, and technical context in which
they must operate. Conversely, we've found that additional attention is needed relative to
working with contractors to incorporate the use of architectures into their
system/software development processes and in applying architecture to support
Enterprise Integration.

Introduction

Acquiring systems of any complexity, such as command and control (C2) systems,
requires a disciplined approach to representing both the problem being addressed and the
solution being acquired. The practice of information systems architecture, as it has
evolved over the years and as codified in the DoD Architecture Framework (DoDAF)
[reference 1], attempts to provide this discipline. There are at least two significant goals
for doing this. First, we obviously want to share architecture best practices and lessons
learned so that we don’t have to start from scratch developing new ways to represent
problems and solutions each time we acquire a new system. Second, we want to provide
some architecture practice consistency across acquisition programs in the hope that this
will help foster greater commonality and interoperability among the end products – the
acquired systems.

At the Air Force Materiel Command’s Electronic Systems Center (ESC), we are using
architecture in multiple programs to represent requirements and to guide solution designs.
We also use architecture to ensure that programs better understand their operational and
system context within the enterprise. We've had varying degrees of success. On the
positive side, we’ve found the architecture to foster significant communication between
the user, the acquirer, and the developer. Conversely, we've found that additional
attention is needed relative to working with contractors to incorporate the use of
architectures into their system/software development processes. Finally, we believe that
the use of architecture to support enterprise integration, while very promising, is still in
its early stages of development.

This paper reports lessons learned on three large representative C2 programs. Two of the
programs are updates to existing systems while the third is the acquisition of a significant
new capability. The programs’ identities remain anonymous so as to foster a more
candid reporting of lessons learned.

Architecture as a Means to Represent Operational Requirements

There is no single, widely accepted definition of what is meant by “architecture-based
acquisition.” Some believe that it requires starting the acquisition from “architecture-
based requirements” – although there is no agreed-upon definition of exactly what that
means either. In this section, we report the experience of three ESC programs in using
architecture to represent operational requirements.

Program A provides for the migration of multiple legacy systems to a more network-
centric, enterprise-based system while utilizing evolutionary acquisition to support
evolving requirements. The program also includes the sustainment of the legacy systems
until they are migrated and eventually decommissioned. In this program, ESC and the
operating MAJCOM jointly developed operational architecture views (OV’s) using an
object-oriented methodology and intended to use them as the requirements baseline for
the program. The architecture development process also supported subsequent business
process reengineering efforts by the operating MAJCOM. The OV’s were included in the
RFP package and the bidders were required to submit system architecture views (SV’s)
as part of their proposal. The OV’s have continued to evolve with the MAJCOM
producing a validated major release on a yearly basis.

While the OV’s were part of the RFP package, they were not put on the contract due to
their need to continue to evolve separate from the acquisition effort. Instead, the
contractor used the OV’s to develop separate documentation detailing the functional
requirements for each development increment. This more traditional development
specification then went on contract along with separate documentation detailing
performance-related requirements and legacy system sustainment requirements. It was
intended that each increment’s functional requirements documentation would be directly
traceable to the OV’s; however, this didn’t work in practice as the contractual
requirements documentation tended to be more general than the OV’s making it difficult
to provide the traceability from OVs to requirements to implementation.

Program B is also a major upgrade of a worldwide legacy system involving both a
migration of disparate components to a common infrastructure and creation of a
distributed, net-centric enterprise capability. The initial block upgrade addresses half of
the total functional capability of the system which requires maintaining interfaces to
legacy components. It also reuses major software components and integrates
COTS/GOTS hardware and software packages. New functionality development is
limited. Future blocks will address the remaining functional capabilities.

In preparation for this effort, the ESC System Program Office (SPO) harmonized existing
OV products developed by a separate government user organization with “as-is” SV
products it had developed to represent the fielded legacy system. They also developed
and coordinated high-level “to-be” SV products with the users. These products were
presented at an industry forum prior to RFP release to educate potential bidders to the
size, scope and vision of the effort.

The RFP consisted of a more traditional Technical Requirements Document (TRD) that
captured system technical and performance requirements and a Statement of Objectives
(SOO) that called out specific tasks the contractor was to perform. The contractor was
directed to develop specific OV and SV architecture products needed to support the DoD
acquisition process using the Unified Modeling Language (UML) specification [reference
2] and the Popkin System Architect tool [reference 3]. Working closely with Subject
Matter Experts (SMEs) the contractor captured operational requirements in a tiered series
of UML Use Cases and developed the DoDAF operational, system and technical views
called for by the SOO. Wherever possible, the contractor harmonized their products with
those from an evolving, parallel user effort as an informal confidence check. The ESC
team continues to work closely with the contractor as the architecture products evolve.

Future block upgrades will be preceded by extensive government architecture product
development. Current plans call for government development of operational, system and
technical views that will be levied on the development contractor for compliance. The
user community will develop the operational views and the ESC SPO will generate the
system and technical views.

The Program B contractor also uses DOORS [reference 4] for requirements management
which has allowed mapping the requirements to the architecture through the DOORS-
Popkin System Architect interface capability. While the DOORS database is not a formal
deliverable, the contractor has made it available for review by the government. However,
the requirements database is extremely large which has made it difficult for the Program
Office to do an in-depth analysis to ensure that all requirements have been accurately
mapped to the architecture.

Program C is developing a new capability requiring multiple contractors led by an overall
integration contractor. In this program, architecture is viewed as a tool used in support of
systems engineering. Program-related personnel develop specific architectural products
in response to particular program needs. The focus is not on developing the definitive

overall architecture to guide program development but instead on building a core set of
architectural data incrementally as needed that can be reused as necessary to support key
systems engineering analyses. There is no single overarching architecture, but rather
multiple architectures. There are “driving” architectures, such as the enterprise-level C2
mission and infrastructure architectures as well as program-level architectures (such as an
operational views developed by the SMO and system/technical views developed by the
SPO and multiple contractors). These architectures vary in scope, level of detail and
intended purposes.

Program C’s SPO personnel also developed a separate TRD. The TRD references the
enterprise-level architecture OVs, but there is no requirement on the contractor to
develop specific architecture products or to utilize the DoDAF over any other architecture
framework. However, it is anticipated that since the program and enterprise-level OVs
do utilize the DoDAF and are referenced by “shall statements” in the TRD, the
contractors will opt to generate DoDAF products.

The program has also required that the contractor use architecture-based processes.
Again, while there is no widely accepted definition of exactly what this means, the SPO
is trying to be proactive in determining how it will use architecture throughout the
program and in communicating that to the contractors. The program has been using
architecture since program conception to help understand the requirements, determine
whether the requirements make sense, identify missing requirements, determine risk
areas, and address interface disconnects. The program is currently using the architecture
as a communication vehicle among the program office, the integration contractor, and the
user to clarify requirements. Requirements documents “shall statements” are being
traced to UML diagrams. The program expects to have good traceability between the
requirements and the architecture but it is still early in the process.

Architecture as a Means to Drive System Design

It was anticipated that the use of architecture-based requirements would facilitate system
design in much the same way that the architectural diagram of a building is used to drive
engineering design plans for that building. While the use of architecture in building
design is part of the accepted process within that domain, this is not yet the case in the
development of C2 systems. The introduction of architecture (that is, rigorous
architecture as defined by the DoDAF) into the acquisition of C2 systems represents a
paradigm shift in the design of C2 systems that is still underway.

In Program A, the government developed technical architecture views based on the then-
extant Joint Technical Architecture (JTA) [reference 5] and included them in the RFP
package along with the operational views. The bidders then submitted a system
architecture view that corresponded with the problem space (functional requirements)
described in the operational views and the technical constraints described in the technical
views as part of their proposal. The government has not updated the technical views
since contract award. The intent was that the contractor would recommend changes to
the technical views as part of their evolution plan.

The hope was also that the contractor supplied system views would flow naturally in a
single tool-based environment from the operational views all the way through to system
implementation. For a variety of practical considerations (see issues below), this did not
occur; however, the operational and technical views did serve as a significant
communication mechanism between the government and the contractor as they developed
their system design and eventual system implementations.

Similarly, in Program B the architecture products are used to facilitate communication
both within and across contractor and government teams. They are utilized throughout
the acquisition process serving as the basis for discussion at major reviews. In addition,
the contractor’s test program is structured about testing to the Use Cases.

Initial contractor architecture efforts drove system design. For example, during Use Case
development, contractor architects identified some common low-level Uses Cases for
exploitation to enhance system efficiency. In addition, contractor system architects and
designers noted that working directly with operational SMEs in developing the Use Cases
was extremely effective in the requirements interpretation process. This provided the
architects and designers with tremendous insight into the operational requirements of the
system which is reflected in the design.

However, the contractor development team is not utilizing the architecture tool as a
development tool, opting instead to use a tool they used in prior development efforts for
low level design and software generation. This disconnects low-level design and
implementation from the government and contractor developed architecture products and
adds a degree of configuration management complexity which the contractor handles
through DOORS. Maintenance of the high level architecture products has become an
issue, however, as these products no longer drive the design since the developer’s took
over. The SPO continues to monitor the products for adherence to the evolving design.

In Program C, SPO personnel elected not to reference the evolving OSD and other net-
centric guidance/direction documentation directly in the technical requirements but rather
to distill this guidance into program-specific technical requirements. A primary rationale
for this approach was the multiple, and sometimes conflicting, sources of net-centric
guidance and its dynamically evolving nature. As new/modified guidance is developed,
the technical requirements are updated as part of an ongoing technical exchange between
the government and the contractors.

The program is requiring that executable models of the software be developed to
demonstrate capability. The program office is looking to use these models to address
schedule and performance aspects of the program. The program also constrains the
contractors to use UML but leaves the choice of tool to the contractor. At this point in
time, the program is still in the early phases and no actual design work has commenced.

Architecture as a Means to Support Enterprise Integration

Figure 1 – The role of the Architect and the Architecture

Multiple stakeholders have a vested interest in the success of ESC’s programs. This
includes the PEO, users of various kinds and their representatives, program element
managers, Air Staff and DoD policy makers, contractors doing development and
maintenance, vendors providing COTS products, SPO personnel, testing agencies, system
engineering support personnel, Congress, and the public at large. These stakeholders
together contribute to defining the overall Vision for the programs as individual entities
and as collections of entities (an “enterprise”) that together provide integrated warfighter
capabilities. This Vision is defined as some “optimal” balance of objectives and needs to
include certain functionality and performance within a context of various (often
competing) “-ilities” such as “out-of-the box” interoperability, reliability, flexibility,
securability, testability, and affordability. It is the job of the architect to help the
stakeholders come together to define this Vision (optimal balance) and to then lay out a
technical strategy for how to achieve this Vision at both the enterprise- and program-
level.

The architecture’s operational and system views describe the current “as-is” state (to
some degree) and potentially many future “to-be” states. These future states may be
characterized as “planned” or “could-be.” The architecture’s technical views also
prescribe how to move from the as-is to the to-be state. The architecture documentation
represents the data underlying the architecture in a form that can be used by multiple
interested parties for multiple purposes. A primary purpose is to effect the transition
from the as-is to the to-be state.

System
/

Enterprise
Architecture

Documentation

documents

describes
prescribes

Architect

e.g.,
reliability,
performance,
security, ... Stakeholders

(buyers, users,
maintainers , testers,
developers, …)

As-Is time

Architecture Users*

Architecture Users*

* Includes most if not all of the stakeholders

Effect the transition

Vision

Objectives/
Needs

To-Be

The architecture represents multiple facets of the program or enterprise – notably much
of the range of DOTMLP-F (doctrine, organization, training, materiel, leadership,
personnel, and facilities). While ESC personnel generally acquire electronic systems, the
architecture must include, and in fact be based upon, the operational context in which
those systems are used. While it is possible to extract the “systems view” from the
architecture, it is not proper to think of the “systems architecture” as a separate entity
from the overall architecture.

While the development of program-level architectures is relatively well-understood, their
development and use at the enterprise-level is not. At the enterprise-level, ESC’s primary
products conceptually include:

• An overall systems architecture view for the enterprise
• An overall technical architecture view for the enterprise
• Contributions to the Air Force Enterprise Architecture (AF-EA) Reference

Models [reference 6]

The enterprise-level architecture products are more generalized (less detailed) than their
program-level elements. The enterprise systems architecture view describes what
systems make up the enterprise, what they do, and how they are inter-connected. The
systems architecture view includes descriptions of alternative enterprise-level system
deployments. The technical architecture view provides the common technical principles
(building codes) for building the systems so that they all meet some set of desired
characteristics.

The AF-EA Reference Models are an organized set of common reusable architecture
entities (e.g., terms, profiles, standards, guidance, performance objectives and measures)
that allow architectures at multiple levels to be interrelated. ESC has a key role in
developing the AF System Function/Service Reference Model (SRM) and the AF
Technical Reference Model (TRM).

As stated above, the systems architecture view can cover multiple timeframes to include
an “as-is”, “planned”, and potentially several “could-be’s.” Ideally, the “planned” and
the “could-be” architecture timeframe views are derived from time-stamped architectural
information about the systems such that an observer could request a snapshot view for an
arbitrary future time of their choosing. Barring this, there will be “planned” and “could-
be” snapshots for pre-selected timeframes.

Imbedded in the multiple “could-be” system views is a certain amount of engineering and
programmatic analysis leading to an assessment of the military value of these alternative
architectures. This analysis could, for example, look at the various distribution strategies
for a particular architecture based on intended operations and assuming various
infrastructure lay-downs. The chosen architecture captures the results of the analyses in a
form that facilitates enterprise engineering and integration.

These architecture products combined with program requirements become guidance and
direction on our contracts with industry thereby supporting the integrated enterprise
objectives of the AF and DOD.

In practice translating enterprise architecture into program requirements and guidance is
still an evolving process. Program A was an early an adopter of architecture and predated
much of the more recent efforts to develop enterprise level architectures. As a result it
has become a cornerstone of the MAJCOM’s enterprise architecture work with other
program architectures being developed to align with the Program A architecture. On the
other end of the spectrum, Program C was initiated in conjunction with the development
of the AF-EA and incorporated a need to align with this enterprise architecture into the
development of its program requirements. Many current C2 programs and enterprise
level architectures fall somewhere in between these two cases with program and
enterprise architecture products being developed in parallel. Thus enterprise guidance
may necessitate a change in program requirements with potential impacts to cost and
schedule.

Net-Centric Operations is a clear example of enterprise level direction coming down to
the programs and all three programs are working to address this direction. A key
challenge has been how to address net-centricity and Service Oriented Architectures
(SOAs) with the DoDAF architecture products. The DoDAF products were originally
developed with more of a point-to-point interface in mind and need to be tailored to
address the concept of information services. Program C has elected to develop
extensions to the SV-6 product to address information services by linking in meta-data
such as information service name, access point, and the behavior and performance of the
service. As part of their activity in this area, they recognized a need to introduce a higher
level of abstraction into their depiction of interfacing elements by using high level node
categorization to bring the amount of architecture data to a more manageable level.
Program B has explored utilizing the OV-3 product to capture SOA-related data
recognizing a similar need to provide a level of abstraction of receiving nodes to reduce
the number of entries to a manageable level. Program A has been approaching this area
from more of an object-oriented focus with less emphasis on the DoDAF products. Their
approach is centered on capturing transactions with systems as an interface class.

Issues

As implied above, there are several issues associated with the practical job of using
architecture to deliver integrated warfighter capability. We mention a few of them here.

While the notion of architecture and the DoD Architecture Framework have been around
for some time, this shift in culture and process is still ongoing. Contractors typically
have existing non-architecture-based processes in place using traditional requirements
and specifications documents. While the two are not incompatible, keeping two
representations of essentially the same information synchronized takes extra work. This
is true throughout all phases of the acquisition process. For example, while the
architecture’s Use Cases could be an excellent tool to drive testing (vs. simply support it),

this is seldom the case in practice. However, we did find some success stories. In one
case, the original contract called for final delivery of the architecture at the final design
review. However, it was recognized early on that the architecture work needed to
continue as the system continued to evolve in later phases and the government
reprogrammed funding to continue the architecture effort to capture the “as built” system.

There are at least two significant methodological approaches to architecture – structured
analysis and object-oriented – with advantages and disadvantages for each. They also
have some degree of incompatibility. Some argue that the object-oriented approach is
more suited at the program-level as it can lead potentially lead to direct software
implementation and several of our programs have indeed made a move in this direction.
The DoD and AF-level enterprise architectures, however, tend to be developed in
structured analysis.

The existing DoDAF architecture products do not capture performance related
requirements overly well. The only product specifically focused on performance
requirements is the SV-7, Systems Performance Parameters Matrix., and it is focused on
the solution set. What is specifically missing is an explicit characterization of the various
“-ilities” requirements (stakeholder needs) associated with business processes to include
temporal, reliability, and security performance.

The selection of architecture tools is frequently a hotly debated topic. Program A
selected their tool based on what they felt was most likely to be useful to the contractor in
the development of the system. Thus they utilized a development tool for their
architecture development. While the contractor also adopted the same tool, their process
did not address using the operational architecture products in their development effort.
So despite using the same tool, this did not result in the close coupling of the system
design to the operational architecture that was originally envisioned. Program B took the
approach of specifying the use of a government-preferred tool for architecture
development. However, the contractor did not utilize that tool in their coding efforts but
rather elected to use a more appropriate code development tool that does not link to the
architecture tool making traceability from the architecture to the code more difficult.

Over time it has become apparent that an important factor for incorporating architecture
into system acquisition was the underlying architectural data and not the particular form
or tool that is chosen. The architecture is the underlying data and not the products in
which the data is presented. In addition, no single entity can develop all of the needed
architectural data and therefore we need to coordinate and/or align multiple architecture
development efforts by developing a common understanding of key architectural data.
Program C has adopted an architectural data focus where there is no single overarching
program architecture. The emphasis is on developing a common set of architectural data
that can be used to support the various analyses that the program elects to undertake.
This approach requires the development of a configuration management process for the
various architectures that are developed to support the program to ensure that these
activities are coordinated and that the common architectural data is maintained. Initial

results appear promising; however, it is too early in the process to determine whether this
will lead to a system design that is truly architecture-based.

Finally, when inevitable program difficulties arise, the tendency is always to go back to
the approach you know to meet the needs of the moment. Typically, both government
and contractor are less willing to try to work with the new approach (architecture) and
become more willing to sacrifice the perceived long-term benefits to address the near-
term delivery needs.

Summary

Table 1 presents a summary of the architectural attributes of the three programs discussed
in this paper. In general, architecture has proved useful in the acquisition of C2 systems
but it has had the inevitable bumps in the road of any new approach. Architecture has
proved to be a very useful communications tool in the requirements development and
refinement/clarification process. It provides a common basis on which to discuss the
requirements and achieve a common understanding between the user, the acquirer and the
developer. However, to more effectively use architecture in this area requires
corresponding changes in existing government and contractor acquisition and
development processes.

 A B C
Intended Use C2 requirements

capture for
system(s)
acquisition

Description of “To
Be” capabilities for
system acquisition

Generation of
architecture data to
support key systems
engineering
decisions during
system acquisition

Program Status Initial increment
operational, next
increment under
development

Initial block
upgrade entering
contractor testing

Integration contracts
awarded, in
requirements
refinement phase

 A B C
Views/Products AV-1/2,

OV-1/2/3/4/5/6c/7
TV-1

AV-2
OV-2/3
SV-1/2/4/5/6/8/9
TV -1

Focus is on common
core architectural
data vice specific
architecture
products. Multiple
sets of architecture
products being
developed to
support key SE
decisions. Specific
products developed
driven by
underlying
information needs
of a particular
decision.

Tools/File Formats Rationale Rose
MS Office
Limited use of
Popkin SA

Popkin SA
MS Office

Rhapsody
Popkin SA

Level of Detail Detailed description
of required system
behavior

Detailed description
of capabilities

Varies from high
level to detailed
description
depending on
specific area under
investigation.

Methodology/
Strategy

UML-based
approach organized
along MAPE
construct and 3-tier
approach (role,
operational node,
physical node)

UML-based
approach using 3
tier structure (A-
level, B-level and
C-level)

UML-based
approach using 3-
tier structure (A-
level, B-level, C-
level)

Fundamental
Architecture Entities

Use cases,
sequence/
collaboration
diagrams, IER
database, activity
diagrams, class
diagrams,
operational trace
sequences

Use Cases,
Sequence Diagrams,
IER Matrix,
Activity Diagrams,
Class Diagrams,
Collaboration
Diagrams,
Deployment
Diagrams

Use cases, IER
database?, activity
diagrams?

Table 1 Program Architecture Attributes

The extension of architecture use into system design has been somewhat less successful –
largely due to the fact the contractors’ existing processes have not traditionally been
architecture-based. Further study on how to incorporate architecture data into existing
development processes will be needed to make improvements in this area.

Architecture usage at the enterprise level shows significant promise but again suffers
from a lack of a common understanding on how architecture data will be used to support
enterprise integration activities. There is much to be gained in this area to use
architecture to show how programs can more effectively and efficiently fit together.

A common theme across all three levels of architecting is the need to understand how
architecture fits into the business processes it is intended to support. Architectures are
most useful when they are addressing specific concerns. A “one size fits all” approach to
architecture is not achievable. A key to success in this area is to focus on the data
underlying the architectures and to strive to align the data across multiple architectures at
multiple levels where appropriate identifying potential reuse and interoperability
opportunities along the way.

References

1. Department of Defense Architecture Framework, V1.0, 15 Aug 2003, DoD,
http://www.defenselink.mil/nii/doc/DoDAF_v1_Volume_I.pdf

2. Unified Modeling Language, Object Management Group, http://www.uml.org/
3. Popkin System Architect modeling tool, http://www.popkin.com/
4. DOORS requirements management tool, http://www.telelogic.com/
5. Joint Technical Architecture, Defense Information Systems Agency,

http://jta.disa.mil/jta/jta-vol-I.pdf
6. AFPD 33-4 Enterprise Architecting (Draft) and AFI 33-4xx Enterprise

Architecting (Draft)

