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Abstract 

Among the lessons learned from recent conflicts stands the dramatic change 
in the very way wars are fought. There are no more clear-cut enemies or allies; rules 
of engagement have become increasingly fuzzy; guerrilla and insurgent tactics are 
now commonplace: in short, the battlespace is a very different place from what it 
used to be. Furthermore, advances in sensor technology and network computing 
have brought a new element to the complex equation of warfare: information 
overload. Nowadays, instead of merely gathering information and displaying assets, 
command and control systems must be able to fill the gap between the glut of 
information arriving from a networked grid of sensors and the capacity of human 
commanders to make sense of it. In short, the quest today is for systems that work 
under the knowledge paradigm. Systems must automatically provide decision makers 
with a clear picture of what is happening, how it relates to the current situation, and 
what are the options and their respective consequences. Facing this challenge with 
technologies of the past is a recipe for failure.  New, more powerful approaches are 
needed. The objective of this paper is to argue for two claims: (1) Bayesian decision 
theory is an appropriate technology for modeling human decision-making in 
complex, ambiguous scenarios; and (2) Bayesian reasoning technology is a promising 
enabler for Network Centric Warfare. To support both claims, we have applied Multi-
Entity Bayesian Networks (MEBN) to model a historical tactical decision from the 
naval domain. MEBN is a breakthrough Bayesian reasoning system in which complex 
probabilistic models are constructed from modular components that can be 
replicated and combined in an infinite variety of ways. MEBN allows models to 
capture important and subtle aspects of objects and their interrelationships that 
would be impossible to model using existing technologies. We provide a brief 
overview of modeling in MEBN and then present our model and the outcome of 
applying it to a historical scenario. Our results clearly support the validity of our 
approach. 

1. Introduction 

In order to meet the new challenges faced by American forces in a changing 
battlespace environment, the DOD has been aggressively pursuing a doctrinal and 
operational transformation focused on taking full advantage of Information Age technologies. 
According to the Secretary of Defense Donald Rumsfeld, “U. S. Forces must leverage 
information technology and innovative network-centric concepts of operations to develop 
increasingly capable joint forces. New information and communications technologies hold 
promise for networking highly distributed joint and multinational forces.”1 Behind these 
transformations lie concepts such as Network Centric Warfare (NCW), which translates 
information superiority into combat power by effectively linking knowledge entities in the 
battlespace [1].  NCW and other transforming concepts are driving warfare toward greater 

                                                 
1 Source: Department of Defense Office of Force Transformation’s Network Centric Warfare Primer, available at 
http://www.oft.osd.mil/library/library_files/document_318_NCW_GateFold-Pages.pdf 
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levels of situational awareness, greater autonomy and increased freedom of action at ever 
lower levels of the command chain. 

To realize these and similar concepts stated in the Joint Vision 2010, massive 
investments have been made to achieve sensor interoperability and information sharing 
between combatant platforms in a tactical environment. These investments are consistent 
with the general perception within the DOD that the key to successful tactical decision 
support systems resides in their ability to cope with increasing amounts of asynchronous data 
arriving from many diverse sensors, sometimes presenting ambiguous, contradictory, or 
uncertain evidence to support decision-makers. More important, coping in this context 
requires not only the capacity to collect, store, and access data, but also the ability to make 
sense of it, and to sift through it to identify the data most relevant to a decision maker’s 
problem.  This is no minor challenge, and as we will see in the next section, combining the 
ability to express intricate situations while also being able to reason with uncertainty has 
been a quandary that most technologies in use today are not well suited to solve.  

2. Background 

Most currently fielded command and control systems use a rule-based methodology 
for storing expert knowledge and using it to guide tactical decisions according to pre-
established policies. This technology has been widely used because of its flexibility and 
relative computational efficiency, but its simplicity renders the approach incapable of coping 
with the increasing complexity of modern warfare. 

Alternative schemes to represent complex, intricate situations are usually based on 
classical logic systems. More specifically, many systems are based on some variation of First-
Order Logic (FOL), which according to Sowa “has enough expressive power to define all of 
mathematics, every digital computer that has ever been built, and the semantics of every 
version of logic, including itself” ([2], page 41). For this reason, FOL has become the de facto 
standard for logical systems from both a theoretical and practical standpoint.  However, 
systems based on classical first-order logic lack a theoretically principled, widely accepted, 
logically coherent methodology for reasoning under uncertainty, thus limiting their suitability 
for open, uncertain environments where tactical decision support systems operate. 

A promising approach for handling uncertainty in NCW decision support systems is 
Bayesian Inference. Its advantages over rule-based systems have been widely acknowledged 
(e.g.[3; 4]). So far, the dominant technology for Bayesian inference is Bayesian Networks 
(BN) [5; 6], a very capable probabilistic representational scheme that has been successfully 
used in many different areas such as language understanding [7; 8], visual recognition [9], 
medical diagnosis [10], and search  [11]. Covering BNs is not in the scope of this work, but 
the interested reader seeking for a review of recent applications of Bayesian Networks will 
find it in Heckerman [12]. 

Unfortunately, BNs are not expressive enough for many real-world applications. More 
specifically, Bayesian Networks assume a simple attribute-value representation – that is, each 
problem instance involves reasoning about the same fixed number of attributes, with only the 
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evidence values changing from problem instance to problem instance. Present day tactical 
situations involve intricate relationships among many variables, rendering techniques with 
limited representational power such as BNs unsuitable for building useful, detailed models. 

As a result, a number of languages have appeared that extend the expressiveness of 
standard BNs in various ways (e.g. [13], [14], [15]). Although these methods provide 
significant advances over traditional BNs, they do not achieve the full representational power 
of First-Order Logic (FOL).  

In order to develop a tactical decision system that combines the advantages of FOL 
with the power of Bayesian Inference, we propose to employ Multi-Entity Bayesian Networks 
(MEBN, [16]). An implementation of MEBN logic is IET’s Quiddity*Suite, a knowledge-based 
probabilistic reasoning toolkit. As a means of demonstrating the potential of MEBN logic to 
represent complex, real-world tactical decision environments we built a prototype model of a 
tense tactical situation involving a 
possible attack on a U.S. Aegis cruiser 
by a Libyan gunboat.   

3. The Gunboat Scenario 

This scenario was presented by 
Cohen, et al. ([17]) to illustrate a 
model of human cognition that 
accounts for the decision making 
process of the Commanding Officer 
(CO) and the Tactical Action Officer 
(TAO) of an U.S. Aegis vessel. In that 
article, the authors describe a 
historical situation assessment 
scenario, which they use as a means 
to illustrate their model of human 
cognition.  The authors argue that 
their model accounts for the decision 
making process followed by the U.S. Navy officers whose reasoning they are describing. 
Their model of human cognition assumes that human decision makers apply plan recognition 
templates to scenarios they encounter, matching features of the template to the scenario, and 
then using the template as a guide to future problem solving.  

The already tense situation between the U.S. and Libya worsened after the hijacking 
of a TWA airliner in July 1985, which was followed by bombing attacks at American Airlines’ 
counters at Vienna and Rome in December of that same year, both linked to terrorist Abu 
Nidal under patronage of Libya. Following the bombing attacks, the U.S. started a series of 
operations code-named “Attain Document”, in which U.S. ships conducted freedom of 
navigation demonstrations in Libyan-claimed waters, amidst threats from the Libyan leader. 
The operations lasted until March 1986. During this time, many incidents occurred in which 
Libyan assets were damaged or destroyed. 

Figure 1 – The Gunboat Scenario 
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Figure 1 depicts the particular situation of interest, which occurred on March 26th 
when a gunboat emerged from a Libyan port in the Gulf of Sidra, turned toward an Aegis 
cruiser, and increased speed. The TAO on the cruiser, from now on referred to as Ownship, 
was convinced the gunboat intended to attack. Several factors supported his assessment. The 
track was inbound and appeared to be a combat vessel from a hostile nation. It was moving 
fast at 45 knots on a non-cardinal bearing towards Ownship, which at this point was a 
logical target for the Libyans since it was 20 miles within the "Line of Death" (i.e. within 
Libyan claimed waters).  

Furthermore, Ownship (but not other members of the battle group) had detected 
apparent missile launches toward other American ships earlier in the day, indicating that 
Libya was actively engaging surface vessels. However, other factors complicated this 
assessment. The Libyans had far better air assault assets than this small gunboat, and had in 
fact used them earlier in the day; the gunboat stood a slim chance against the U.S. fleet.  
However, both the Ownship’s CO and its TAO considered that perhaps Libya was willing to 
use every available asset to strike the U.S. 

The CO and the TAO believed the gunboat probably did not have the capability to 
detect Ownship at the range at which it had turned inbound, and the dark of night only 
complicated localization. They reasoned that third party targeting or unusual technology 
might explain the choice of vectors. Furthermore, Ownship was not the only Aegis cruiser 
below the "Line of Death." Virtually any maneuver by the track would have put it on a vector 
to a friendly ship. Was the vector to Ownship merely a coincidence?  There was also another 
U.S. cruiser farther into Libyan waters and closer to the gunboat. If the gunboat planned to 
attack, why wasn't the other cruiser the target? If the Libyans wanted to attack, they had an 
air capability that would have been a more effective means of attack than the gunboat. Thus, 
there were strong arguments against hostile intent. 

This scenario has all the ingredients of a common tactical decision in a modern 
conflict: a large set of hypotheses that are valid given the ambiguous and conflicting 
evidence at hand. As a means of both presenting MEBN and showing its ability to deal with 
such dynamic, complex situation, in the next section we give some background on modeling 
situations using MEBN logic, while at the same time introducing our model and the process 
we used to build it.  

4. Modeling with Multi-Entity Bayesian Networks 

MEBN logic represents the world as comprised of entities that have attributes and are 
related to other entities. Random variables represent features of entities and relationships 
among entities. MEBN logic expresses knowledge about attributes and relationships as a 
collection of MEBN fragments (MFrags) organized into MEBN Theories (MTheories). An 
MFrag represents a conditional probability distribution for instances of its resident random 
variables given their parents in the fragment graph and the context nodes. An MTheory is a 
set of MFrags that collectively satisfies consistency constraints ensuring the existence of a 
unique joint probability distribution over instances of the random variables represented in 
each of the MFrags within the set. 
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Each MFrag is composed of five components: a fragment graph, a finite set of context 
nodes, a finite set of input nodes, a finite set of resident nodes, and a set of local and default 
distributions.  The fragment graph is an acyclic directed graph in which the nodes represent 
random variables and the edges represent conditional probability dependence. Figure 2 
shows an example of an MFrag. In this case, the fragment graph has four nodes. The upper 
yellow node is a context node; the gray node just below it is an input node; and the two 
white nodes at the bottom are resident nodes. 

A node in an MFrag may have a parenthesized list of arguments.  These arguments are 
placeholders for entities in the domain.  For example, the argument c to Aggressiveness(c) is 

a placeholder for an entity that is a combatant, and 
whose aggressiveness we want to represent.  Each 
actual entity in the domain is assumed to have a 
unique identifier. By convention, unique identifiers 
begin with an exclamation point, and no two 
distinct entities can have the same unique 
identifier. By substituting unique identifiers for a 
random variable’s arguments, we can make 
instances of the random variable. For example, 
Aggressiveness(!G1) is an instance of the random 
variable that represents the attribute aggressiveness 
of entity !G1, where !G1 is a symbol that refers to a 
unique entity in the model. 

The resident nodes of an MFrag have local 
distributions that define how the probabilities for 
each of its states depend on the values of their 
parents in the fragment graph. In the example of 

Figure 2, the distribution of states Low, Moderate, and High of node Aggressiveness(c) 
depends on the state of its parent node HighLevelGoal(c). Because HighLevelGoal(c) is a 
resident node, its distribution is also defined in this MFrag. Its probability is a function of the 
value of its parent, the input node SubType(Combatant, c). That is, a combatant’s high-level 
goal depends probabilistically on which type of combatant it is. In a complete MTheory, 
every node of any MFrag has exactly one home MFrag, where its local distribution is defined. 
Input and context nodes (e.g., SubType(Combatant, c) or IsA(Combatant, c)) influence the 
distribution of the resident nodes, but their distributions are defined in their own home 
MFrags. The context node IsA(Combatant, c) for this MFrag represents whether or not the 
entity referred to by the variable c is an entity of type Combatant; and the input node 
SubType(Combatant, c) represents the subtype (i.e., friendly or hostile) of the entity referred 
to by c.  Notice that for the sake of conciseness, we are not displaying the probability 
distributions for the Aggressiveness MFrag. 

Context nodes represent conditions that must be satisfied for the influences and local 
distributions of the fragment graph to apply. Context nodes may have value True, False, or 

 
Figure 2 – The Aggressiveness MFrag 
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Absurd.2 Context nodes having value True are said to be satisfied. As an example, if we 
substitute the unique identifier for Ownship (i.e., !C0) for the variable c in IsOwnShip(c), the 
resulting hypothesis will be true. If, instead, we substitute a different vessel’s unique identifier 
(say, !C1), then this hypothesis will be false. Finally, if we substitute the unique identifier of a 
non-vessel (say, !P1), then this statement is absurd (i.e., it is absurd to ask whether or not an 
entity that is a plan is one’s ownship).  

Typically, MFrags are small, because their main purpose is to model “small pieces” of 
domain knowledge that can be reused in any context that matches the context nodes. This is 
a very important feature of the logic for modeling complex, intricate situations and is one that 
can be seen as the knowledge representation version of the “divide and conquer” paradigm 
for decision-making. The correspondence is clear when we think that while the latter breaks 
a hard, complex decision problem in a set of smaller ones, the former uses a similar 
decomposition approach for representing intricate, complex military situations. This 
decomposition is accomplished by modeling a military situation as a collection of small 
MFrags, each representing some specific element of a tactical situation. The additional 
advantage of MEBN modeling is the ability to reuse these “small pieces” of tactical 
knowledge, combining them in many different ways in different scenarios. 

Indeed, MFrags provide a flexible means to represent knowledge about specific 
subjects within the domain of discourse, but the true gain in expressive power is revealed 
when we aggregate these “knowledge patterns” to form a coherent model of the domain of 
discourse that can be instantiated to reason about specific situations and refined through 
learning. It is important to note that just collecting a set of MFrags that represent specific parts 
of a domain is not enough to ensure a coherent representation of that domain. For example, 
it would be easy to specify a set of MFrags with cyclic influences (i.e. a random variable 
which has its probability distribution influencing itself), or one having multiple conflicting 
distributions for a random variable in different MFrags (i.e. a random variable with more than 
one home MFrag, each defining a different distribution).  

In order to build a coherent model we have to make sure that our set of MFrags 
collectively satisfies consistency constraints ensuring the existence of a unique joint 
probability distribution over instances of the random variables mentioned in the MFrags. 
Such a coherent collection of MFrags is called an MTheory, and it represents a joint 
probability distribution for an unbounded, possibly infinite number of instances of its random 
variables. This joint distribution is specified by the local and default distributions within each 
MFrag together with the conditional independence relationships implied by the fragment 
graphs.  

A generative MTheory summarizes statistical regularities that characterize a domain.  
These regularities are captured and encoded in a knowledge base using some combination of 
expert judgment and learning from observation.  To apply a generative MTheory to reason 

                                                 
2 State names in this paper are alphanumeric strings beginning with a letter, including True and False. However, 
Laskey (2004) uses the symbols T for True, F for False, and ⊥ for Absurd, and requires other state names to begin 
with an exclamation point (because they are unique identifiers). 
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about particular scenarios, we need to provide the system with specific information about the 
individual entity instances involved in the scenario. On receipt of this information, we can 
use Bayesian inference both to answer specific questions of interest (e.g., how likely is it that 
the gunboat is executing an opportunistic attack?) and to refine the MTheory (e.g., each new 
tactical situation gives us additional statistical data about the likelihood of a given plan for 
that set of circumstances).  Bayesian inference is used to perform both problem-specific 
inference and learning in a sound, logically coherent manner. 

Findings are the basic mechanism for incorporating observations into MTheories, such 
as “!G0 (the Libyan gunboat in our model) is approaching !C0 (Ownship) at high speed”. A 
finding is represented as a special 2-node MFrag containing a node from the generative 
MTheory and a node declaring one of its states to have a given value.  From a logical point of 
view, inserting a finding into an MTheory corresponds to asserting a new axiom in a first-
order theory. In other words, MEBN logic is inherently open, having the ability to incorporate 
new axioms as evidence and update the probabilities of all random variables in a logically 
coherent manner. 

In addition to the requirement that each random variable must have a unique home 
MFrag, a valid MTheory must ensure that all recursive definitions terminate in finitely many 
steps and contain no circular influences. Finally, as we saw above, random variable 
instances may have a large, and possibly unbounded number of parents.  A valid MTheory 
must satisfy an additional condition to ensure that the local distributions have reasonable 
limiting behavior as more and more parents are added. Laskey [16] proved that when an 
MTheory satisfies these conditions (as well as other technical conditions that are unimportant 
to our example), then there exists a joint probability distribution on the set of instances of its 
random variables that is consistent with the local distributions assigned within its MFrags. 
Furthermore, any consistent, finitely axiomatizable FOL theory can be translated to an 
infinity of MTheories, all having the same purely logical consequences, that assign different 
probabilities to statements whose truth-value is not determined by the axioms of the FOL 
theory. MEBN logic contains a set of built-in logical MFrags (including quantifier, indirect 
reference, and Boolean connective MFrags) that provide the ability to represent any sentence 
in first-order logic. If the MTheory satisfies additional conditions, then a conditional 
distribution exists given any finite sequence of findings that does not logically contradict the 
logical constraints of the generative MTheory. MEBN logic thus provides a logical foundation 
for systems that reason in an open world and incorporate observed evidence in a 
mathematically sound, logically coherent manner. 

Figure 3 shows an example of a generative MTheory for the Libyan gunboat scenario. 
For the sake of conciseness, the local distribution formulas and the default distributions are 
not shown here. In this model, each sub-type has only one parent type, but MEBN logic is 
flexible enough to accommodate all features of more complex typed systems, such as 
polymorphism (in a polymorphic MEBN, a given random variable could have different 
definitions for different types of entity), multiple-inheritance, etc. 
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First Order Logic (or one of its subsets) provides the theoretical foundation for the type 
systems used in popular object-oriented and relational languages. MEBN logic provides the 
basis for extending the capability of these systems by introducing a sound mathematical basis 
for representing and reasoning under uncertainty. Among the advantages of a MEBN-based 
typed system is the ability to represent type uncertainty. As an example, suppose we had two 
different types of “submerged entities”, submarines and whales, and we are not sure about 
the type of a given entity. In this case, the result of any query that depends on the entity type 
will be a weighted average of the result given that the entity is a submarine and the result 
given that it is a whale. 

 
Figure 3 – The Gunboat MTheory 

Further advantages of a MEBN-based type system include the ability to refine type-
specific probability distributions using Bayesian learning, assign probabilities to possible 
values of unknown attributes, reason coherently at multiple levels of resolution, and other 
features related to representing and reasoning with incomplete and/or uncertain information. 

MEBN logic supports finite or countably infinite recursion, which includes temporal 
and other kinds of recursion, and can represent and reason about hypothetical entities. 
Uncertainty about whether a hypothesized entity actually exists is called existence 
uncertainty. In the Asset MFrag of our MTheory, the random variable ExistsAst(a) is used to 
reason about whether its argument is an actual asset.  For example, we might be unsure 
whether a sensor report corresponds to one of the vessels we already know about, a vessel of 
which we were previously unaware, or a spurious sensor report. In this case, we can create 
an asset instance, say !A2,  and assign a probability of less than 1.0 that ExistsAst(!A2) has 
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value True. Then, any queries involving !A2 will return results weighted appropriately by our 
belief in the existence of !A2. Furthermore, our belief in ExistsAst(!A2) is updated by Bayesian 
conditioning as we obtain more evidence relevant to whether !A2 denotes a previously 
unknown asset. Representing existence uncertainty is particularly useful for counterfactual 
reasoning and reasoning about causality [18; 19]. 

A very common problem in multi-sensor data fusion systems is association 
uncertainty, which means uncertainty about the source of a given report (e.g. whether a 
given report refers to vessels !C1, !G0 or !G1). Many weakly discriminatory reports coming 
from possibly many vessels produces an exponential set of combinations that require special 
hypothesis management methods [c.f. 20]. In the Gunboat model this problem can be seen 
in the Report MFrag, which captures the complex reasoning involved in inferring the 
existence of a platform given the available sensor reports. As we will see below, MEBN logic 
can represent and reason with association uncertainty, and thus provides a sound logical 
foundation for hypothesis management in multi-source fusion.  

Finally, another important aspect of MEBN logic is its flexibility. The generative 
MTheory in Figure 3 is just one of the many possible (consistent) sets of MFrags that can be 
used to represent the same joint distribution. These MFrags were designed to mimic the 
recognition/metacognition model presented by Cohen, et. al. [17] for time-stressed decision-
making, since we wanted to show that their cognitive approach can be modeled as a 
Bayesian process3. However, the approach to be taken when building an MTheory will 
depend on many factors, including the model’s purpose, the background and preferences of 
the model’s stakeholders, the need to interface with external systems, etc. 

5. Implementing and running the model 

In order to use MEBN logic to draw inferences in a given scenario, we have to have 
an initial generative MTheory, a Finding set (which conveys the new information we have) 
and a Target set (which indicates the nodes of interest to us). We implemented the MTheory 
in Figure 3 using Quiddity*Suite™. Figure 4 shows an example of an MFrag (Aggressiveness) 
and its respective implementation in Quiddity*Suite’s frame-based syntax.  

For our experiments, we implemented the MTheory in figure 3, a set of findings that 
matched the parameters defined in Cohen, et. al. [17] (e.g. information on the two U.S. 
cruisers, the Libyan Gunboat, the reports, etc.), and a target set consisting of nodes that 
would allow us to assess the hypotheses considered in their article. 

The inference process begins when a query is posed to assess the degree of belief in a 
target random variable given a set of evidence random variables.  The first step in MEBN 
inference is to construct a situation-specific Bayesian network (SSBN).  This is an ordinary 
Bayesian network constructed by creating and combining instances of the MFrags in the 
                                                 
3 It is interesting to note that the authors in [17] explicitly stated that the CO’s decision process was not 
Bayesian, since the U.S. officers “considered different interpretations of each cue in the context of alternative 
situation pictures”. Indeed, this kind of situated, adaptive reasoning cannot be captured by standard Bayesian 
networks, but it can be modeled quite naturally by MEBN logic and SSBN construction. 
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generative MTheory. Next, a standard Bayesian network inference algorithm is applied.  
Finally, the answer to the query is obtained by inspecting the posterior probabilities of the 
target nodes. A MEBN inference algorithm is provided in Laskey [16]. 

 
Figure 4 – Aggressiveness MFrag and its Respective Quiddity Implementation 

In some cases the SSBN can be infinite, but under conditions given in Laskey [16], the 
algorithm produces a sequence of approximate SSBNs for which the posterior distribution of 
the target nodes converges to their posterior distribution given the findings.  Mahoney and 
Laskey [21] define a SSBN as a minimal Bayesian network sufficient to compute the response 
to a query. A SSBN may contain any number of instances of each MFrag, depending on the 
number of entities and their interrelationships. 

Figure 5 represents one of the SSBNs that resulted when we applied this process to the 
MTheory in Figure 3 with evidence from table 1 below. For a detailed account of the SSBN 
construction algorithm, the interested reader should refer to Laskey [16]. There, it is possible 
to find the mathematical explanation and respective logical proof for the many intricate 
possibilities when instantiating MFrags, such as nodes with an infinite number of states, 
situations where we face the prospect of large finite or countably infinite recursions, what 
happens when the algorithm is started with an inconsistent MTheory, etc.  

In addition, the text provides a detailed account of how to represent any First Order 
Logic sentence as an MFrag using Skolem variables and quantifiers, and an overview of 
Bayesian learning, which is treated in MEBN logic as a sequence of MTheories. These issues 
go beyond the scope of the present paper. 

For the present work, we dealt with the hypothesis management problem using the 
PLASMA architecture described by Fung, at. al. [22]. In short, we address the possibly infinite 
number of hypotheses by applying logical reasoning to identify what MFrags to retrieve and 
instantiate, and then how to construct the SSBN using probabilistic generalizations of 
forward-chaining and backward-chaining of rules, encoded in first-order logic suggestors. In 
other words, our use of suggestors can be viewed as a way to control the construction of 
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SSBNs, thus ensuring that the most relevant hypotheses are included while avoiding the 
incorporation of large numbers of irrelevant hypotheses. 

 
Figure 5 – An Example SSBN based on the Gunboat MTheory 

In our implementation, we hypothesized plans of action for the gunboat based on 
available evidence. We developed a proof of concept knowledge base for this example 
consisting of: 

• A set of frames representing generic knowledge about naval conflict. Frame types 
include: 

o Combatants: There is a generic combatant frame, as well as subtype frames for 
friendly and hostile combatants. These frames represent background 
knowledge about the high-level goals and the level of aggressiveness of 
combatants.  

o Plans: There are plans for provoked attacks, opportunistic attacks, and patrols, 
as well as a generic, non-specific plan representing the types not included 
among the hypotheses being considered. 

o Attack Triggers:  An attack trigger is a kind of behavior that might provoke an 
attack.  We modeled the U.S. presence below the “Line of Death” as an 
instance of an attack trigger. 

o Reports:  Reports are used to model observable evidence that bears on the 
hypotheses under consideration. 

• A set of suggestors representing knowledge about which hypotheses should be 
explicitly considered in specific situations.  Suggestors are represented as a set of rules 
expressed in first-order logic.  The rules apply observed evidence (e.g., the cruiser is 
situated below the “Line of Death;” the gunboat is on a rapid direct approach), 
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together with information about the current status of the Bayesian network (e.g., no 
attack hypothesis has yet been enumerated for the gunboat), to nominate suggested 
network construction actions.  Although not implemented in this proof-of-concept, 
suggestors can also nominate pruning actions to help make inference more efficient. 

• Particular facts germane to the scenario, including background knowledge and 
observed evidence. 

The suggestors were based on the following general rules which, according to the 
description of Cohen, et al. [17], are reflective of the kinds of reasoning the TAO applied in 
this scenario.  

• IF a ship is sailing in its own territorial waters, THEN the ship may be on patrol. 

• IF a hostile asset is approaching on a bearing directly toward own ship, THEN the 
asset may be attacking.  

• IF an attack by a hostile is hypothesized AND the asset’s approach is rapid and direct, 
THEN the strength of the attack hypothesis is increased. 

All the abovementioned components were implemented using Quiddity*Suite’s 
probabilistic and logical toolbox. We comment and analyze the results of our experiments in 
the next section.  

6. Results and Discussion 

Our results are displayed in Table 1 below, and indicate that the MEBN model 
presented in this work is consistent with the qualitative reasoning of the original study by 
Cohen, et. al. [17].  

Initially, the provoked attack hypothesis dominates, but as the evidence is processed, 
its incongruity with the provoked attack hypothesis becomes more apparent.  This increases 
the probability of the “other” hypothesis.  A natural alternative hypothesis to consider is the 
patrol hypothesis, but it too is incongruent with the available evidence.  When the 
opportunistic attack hypothesis is nominated in response to the failure of other plans to 
account for the evidence, it becomes the dominant hypothesis. 

The results suggest that MEBN logic with SSBN construction provides a natural model 
for the reasoning process engaged in by the CO and the TAO. In addition, given the nature 
and flexibility of our approach, the model has the potential to be applied “as is” to scenarios 
involving arbitrary numbers of combatants and assets, and with varied patterns of incoming 
evidence.  

MEBN’s modular design also allows our model to be extended to include additional 
complexity, such as subtypes of existing entity types or other asset types (e.g., carrier, air 
squadron), additional features of existing entity types, and additional entity types as well. It 
was also clear to us that the model’s modularity facilitates maintenance, modification, and 
iterative improvement, so we can change part of the model without affecting unrelated parts, 
allowing different experts to focus on different parts of a model.  
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The modularity of the MEBN approach and its ability to handle the complexity of a 
real world tactical environment provides a very flexible situation assessment framework for 
tactical decision systems. Thus, we extend our initial statement to claim that the technique 
has the potential to be applied in a wide variety of real-life tactical decision problems that 
involve uncertain, ambiguous, incomplete information asynchronously arriving from many, 
diverse sensors. 

Table 1 – Results of MEBN Inference given different evidence 

Evidence  
(ordered as input into the model) 

Hypotheses Probabilities 
Target of 

Provoked Attack 
Cruiser 1 instigates attack - trigger 

moderate severity 
Cruiser 2 instigates attack - trigger high 

severity  

Provoked attack 
Other 

69.2% 
30.8% 

Cruiser 1: 31.5% 
Cruiser 2: 68.5% 

Gunboat approaching Cruiser 1 Provoked attack 
Other 

81.4% 
18.6% 

Cruiser 1: 77.9% 
Cruiser 2: 22.1% 

Gunboat not approaching Cruiser 2 Provoked attack 
Other 

78.8% 
21.2% 

Cruiser 1: 89.0% 
Cruiser 2: 11.0% 

Gunboat approaching fast Provoked attack 
Other 

93.2% 
6.8% 

Cruiser 1: 96.3% 
Cruiser 2:   3.7% 

Provoked attack 
Other 

62.2% 
37.8% 

Cruiser 1: 79.5% 
Cruiser 2: 20.5% 

Provoked attack 
Patrol 
Other 

42.7% 
31.5% 
25.7% 

Cruiser 1: 70.0% 
Cruiser 2: 30.0% 

Gunboat probably cannot localize 
Cruiser 1 

Provoked attack 
Patrol 
Opportunistic attack 
Other 

4.7% 
2.5% 

90.8% 
2.1% 

Cruiser 1: 51.5% 
Cruiser 2: 48.5% 

From a technical standpoint, the formulation of MEBN logic provided in Laskey [16] is 
to our knowledge the first probabilistic logic to possess all of the following properties: (1) the 
ability to express a globally consistent joint distribution over interpretations of any consistent, 
finitely axiomatizable FOL theory; (2) a proof theory capable of identifying inconsistent 
theories in finitely many steps and converging to correct responses to probabilistic queries; 
and (3) a built in theory for refining theories in the light of observations.  

As such, MEBN should be seen not as a competitor, but as a logical foundation for the 
many emerging languages that extend the expressive power of standard Bayesian networks 
and/or extend a subset of first-order logic to incorporate probability. That said, it is important 
to emphasize the potential application of MEBN logic to command and control systems, 
given its ability to, among others: 
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• Store domain knowledge in “small pieces” that can be reused in future 
occasions. 

• Be extended to richer and more complex situations as needed. 

• Deal with finite or countably infinite recursion, providing a basis for temporal 
reasoning. 

• Use Bayesian learning to infer possible pattern correlations given a corpus of 
data. 

• Deal with type, association, and existence uncertainty. 

• Treat the hypothesis management problem in real time. 

• Represent and reason with uncertainty in a mathematically principled way, 
while keeping the computational time compatible with command and control 
applications. 

Up to the last decade, command and control systems have been designed under the 
information paradigm, a situation that led Creveld to conclude in 1985 that “The history of 
command can thus be understood in terms of a race between the demand for information 
and the ability of command systems to meet it” ([23], page 265). Today, we live under a 
different paradigm, and while the above assertion can be updated simply by changing the 
word “information” by the word “knowledge”, updating command systems is far less trivial. 
In this case, a paradigm shift is required, for which old techniques are not suitable for that, 
no matter how successful they were a mere decade ago and how much time and resources 
are spent to update it. 

To be successful, any implementation of the NCW concept in today’s battlespace 
must have at least the above feature list. We have found MEBN logic to be a very promising 
technology to meet these challenges from the knowledge engineering standpoint, and we 
hope this work may help to articulate and clarify that potential. 
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