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Abstract 

Interoperability is a critical issue for DoD C2 systems. Current research has mostly focused on 
the data interoperability and ontology of context. While these studies are important and useful, 
they have not addressed other important issues on semantic interoperability and its verification & 
validation. This paper proposes a new technique called use scenario, which specifies the 
workflow of passing parameters among different services or the semantics of interoperation. For 
a C2 system, once the use scenario is specified, a family of automated analysis, verification, and 
validation techniques is available for testing and evaluating the system and its interoperability. 
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1. Introduction 

Interoperability is defined as the ability of two or more systems or components to exchange data 
and to use the data in each other's operations [3], which is a critical issue for DoD C2 systems. 
Particularly, the recent emphasis on Network-Centric Warfare (NCW) placed interoperability as 
one of the priority issues. In spite of extensive studies on this topic, the focus has been mostly on  

• Data interoperability including data schema, meta-data, and database integration; 

• XML, such as using XML to represent data schema and as a means for data interoperability; 

• Ontology as a means for context representation and matching in a given taxonomy; and 

• Service-Oriented Architecture (SOA) and other related technologies such as standard 
protocols (SOAP, HTTP, and etc.), interface definitions (WSDL, OWL-S, and etc.), 
registration and publication of interfaces (UDDI), wrapper, automated composition. 

While these studies are important and useful, they have not addressed other important issues on 
interoperability, namely 

• Semantic interoperability: How can C2 systems or services actively collaborate to achieve a 
mission (not just exchange data)? 

• Interoperability verification and validation particularly related to semantic interoperability: 
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How can we know the semantic interoperability meet the specification? 

In this paper, we focus on the semantic interoperability and its verification & validation.  

Generally speaking, semantics defines the meaning of the constructs of a language, or what 
happens during the execution of a program or program part [4][5]. Current research on ontology 
belongs to semantics because it deals with the context match of terminologies such as synonyms 
and acronyms based on taxonomy of a language. However, ontology is only a part of the 
semantics. As shown in Figure 1, we propose to study the semantic interoperation which deals 
with how the data exchanged among the services can or cannot be used. There exist different 
kinds of the semantic interoperability, for example, workflow, data range, and timing. Semantic 
interoperability can be represented as constraints and implemented by policy based computing 
[16]. In this paper, we focus on the work flow part of the semantic interoperability by 
introducing the concept of use scenario. A use scenario specifies how a service or system is used 
by other services or systems. 

 
Figure 1: Semantics and semantic Interoperability  

Future DoD C2 systems not only need to exchange data and interoperate with their fellow C2 
systems with respect to data, but also need to collaborate with other C2 systems in terms of tasks 
and missions. While the current interoperability technologies such as standard interface, data 
representation, and ontology are critical for semantic interoperability, they are not sufficient 
because the current interface technologies provide method signatures only for a single service. 
These method signatures do not provide sufficient information for another new system or user to 
properly use the service, e.g., what the proper calling sequence is among methods of this service 
and what the dependency is among methods of a service or another service. For example, the 
user's manual of a product, say a cellular phone, describes both the functional specification and 
the operational procedure. The former lists what can be done, e.g., make phone call, receive 
phone call, send and receive text massages, store 120 contact items, and play MP3 music. The 
latter, on the other hand, instructs how to use each of the functions in a stepwise fashion. Current 
interoperability definition of systems mainly specifies the functions and the syntax of calling the 
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functions. The use scenario studied in this paper defines how a particular function can be used in 
a stepwise fashion. 

This paper proposes a new technique for semantic interoperability called use scenario, which 
defines the workflow of the exchanged data. The use scenario is an extension to UML’s use case 
[6] as well as David Parnas’ concept of use [1]. An innovative idea is that once the use scenario 
for a service is specified, a family of analyses and verification techniques can be developed for 
the system semantic interoperability, including: 

• Automated sample interoperability templates; 

• Automated interoperability test case generation; 

• System simulation; and 

• Completeness and consistency analyses. 

These automated techniques and tools are possible because the use scenario can be specified 
using a semi-formal specification language supported by automated tools. A use scenario is also 
different from a system scenario. A system scenario describes the behavior of a system when the 
system is activated with a specific input, while a use scenario describes a possible sequence of 
actions to activate a service provided by the system. The use scenario, once specified, can greatly 
reduce the time needed for C2 systems to collaborate by properly calling each other in the 
specified order. 

The automated system interoperability framework can significantly reduce the manpower spent 
for reasoning, verifying, and validating a large C2 system with respect to semantic 
interoperability. This paper presents the detailed techniques and illustrates them using a sample 
C2 system. 

2. ACDATE Modeling Overview 

The ACDATE language, named based on its model entities Actor, Condition, Data, Action, 
Timing, and Event, has been developed as a generic modeling and specification language in the 
domain of system engineering and software engineering [16]. It facilitates the specification, 
analysis, simulation, and execution of the requirement and therefore the system.  

A Scenario is a semi-formal description of system functionality, written in pseudo code text. It is 
a sequence of events expected during operation of system products which includes the 
environment conditions and usage rates as well as expected stimuli (inputs) and response 
(outputs). 

ACDATE entities are the building blocks for Scenario specification. After one’s system 
requirements have been decomposed into ACDATE entities, one can then specify Scenarios. This 
ACDATE/Scenario model allows for system modeling and provides the capability to perform 
various analyses of requirements and their verification and validation [7][10][11][12][13][14]. 
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3. Scenario-based System Semantic Interoperability 

Software applications are becoming distributed. There are several kinds of distribution 
architectures like client/server architecture, multi-agent architecture, and SOA. No matter what 
distributed architecture is adopted by a complex software application, there must be more than 
one components collaborating with each other to achieve a given mission.  

Following the concept of SOA, which is also the trend of DoD Network Centric Warfare, each 
constituent system in a composed complex system, or system of systems, is a self-contained 
autonomous system which provides services and is loosely coupled with other systems. To 
achieve interoperability, each system needs to be able to exchange data and services in a 
consistent and effective way. Also, they may be deployed on to different hardware or software 
platforms. Thus, it is important for the systems to provide universal access capacities 
independent of platforms.  

Most current research projects focus on the data aspect of interoperability. E.g., XML and meta-
data modeling. However, to fully achieve interoperability, handling the data exchange only is not 
sufficient because: 

• Data exchange is a small part of interoperability only; 

• Systems need to interact with each other at run-time; 

• One system may use the services provided by others; and 

• Systems may need to work with legacy systems. 

To make heterogeneous systems working with each other, we need to have a framework which 
provides support for platform independent system service specification, system wrapping for 
legacy systems, and system composition and re-composition.  

3.1 System Service Specification 

In a system of systems, each constituent system (or subsystem) in the composite system can be 
considered to be an agent which can send and receive messages. Each agent provides an abstract 
set of functionalities that are called services.  

For different systems to be interoperable with each other, system's service specification needs to 
conform to a common standard. Services designed using the same service specification language 
can have a higher level of interoperability.  

System service specification is a system profile which provides information of what the system is. 
The profile includes following information: 

• Interface Specification 

Interface specification is critical for system interoperability. It describes the calling 
parameters and return values of the system. The ACDATE model in E2E automation 
provides the capability for interface specification. To be more specific, Events in 
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ACDATE are the key elements for system interaction. The Events-Actions handling 
relation and Data define the interface information for a system, which will be elaborated 
in the following sections..  

• System Scenario & Use Scenario 

 The scenarios describe how the system works and how to work with this system.  

3.2 System Scenario vs. Use Scenario 

System scenario is a semi-formal specification of a system's functional behaviors. It specifies 
what the system's control logic is for a service to handle a specific input. System scenarios are 
derived from system functional requirements directly. A system scenario focuses on how the 
system will behave given it is activated with an input.  

 

The system scenarios are essential to a given system since they specify the system behaviors. 
Once a system is specified with system scenarios, it is able to provide services to handle different 
inputs. It is sufficient for a system to have system scenarios only if it works alone without being 
connected to other systems. If we want to connect the system to other systems to collaborate, we 
need to provide information on how this system works with other systems.  

Use scenario is a semi-formal specification of how the system can be used by other systems. It 
does not specify anything about the system's internal control logic but focuses on how the other 
systems can use the services provided by this system. To be more specific, a use scenario 
indicates the temporal logic and / or timing constraints on a sequence of function calls. It 
provides a usage pattern on how to invoke the interfaces for the system.  

3.3 Use Scenario Specification and Analysis: 

This section defines the syntax and semantics of use scenario. We define the following new 
structural constructs: 

 choice{ option[] option[] … option[] }: choice means that the interoperation can select any 
single sub-scenario (listed as options) to continue the control flow. 

 {} precond: precond indicates the preconditions before a particular action. 

 postcond {}: postcond indicate the postconditions after a particular action. 

 criticalreg {}: criticalreg indicate a critical region such that no other actions can take place 
to interrupt the execution of actions within the critical region. Any action sequence outside a 
critical region can be intervened by any sub-scenario. 

 <>: Any entities enclosed by <> are parameter entities. It can be instantiated by any entity 
that satisfies the requirements described in the use scenario, such as, must have some actions, 
data, or satisfy some conditions. 

With sub-scenarios, the use scenario can describe the interoperation of hierarchical systems in 
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different levels. 

With the use scenario, we can perform 

 Automated interoperation scenarios generation 

If more than one systems specified with use scenarios are to be put together to compose a 
complex system, the interoperation scenarios can be generated by intervene the use scenario 
for individual systems. Please refer to example 1 for detailed introduction. 

 Interoperation scenario correctness checking 

There will be quite a lot of interoperation scenarios can be generated or specified by 
intervene the individual use scenarios for different systems. But not all intervenes for the 
systems are correct interoperation sequence. By the constraints checking such as precondition 
checking, postcondition checking, and critical region checking, we can identify the 
interoperation scenarios that do not satisfy the constraints. Please refer to example 2 for 
detailed introduction. 

 Interoperability cross checking 

The constraints may be specified in different use scenarios. If one wants to put the systems 
together, the interoperability cross-checking needs to be done to identify potential 
inconsistencies. Please refer to example 3 for detailed introduction. 

With the support of the analytic techniques mentioned above, users can verify the correctness of 
use scenario. This can further enhance the semantic interoperability of systems. In the rest of the 
paper, we will show several examples to depict how to perform the reasoning and the analysis. 

3.4 Use Scenario Example 

The first example applies use scenario in a simple C2 system and shows how to automatically 
generate interoperation scenarios. The use scenario of a control system that is in charge of battle 
tank is listed below. The control system is modeled as an actor Tank, which has 5 functions, 
Start, Move, LocateTarget, Fire, and Stop. 

Example 1: 
do ACTION:Tank.Start 
choice { 
 option [  

do ACTION:Tank.Move 
 ] 
 option [ 

do ACTION:Tank.LocateTarget 
 ] 
 option [ 

do ACTION:Tank.Fire 
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 ] 
} 
do ACTION: Tank.Stop 

The following use scenario defines the skeleton of an interoperation with Tank. It is 
straightforward to extract 3 different interoperation scenarios from the use scenario following the 
3 options in the choice: 

< Start, Move, Stop>, 

< Start, LocateTarget, Stop >, and 

<Start, Fire, Stop >. 

There is no precondition and postcondition for any actions. And there is no critical region, which 
means that any actions can intervene with the sequence. For example, suppose there is another 
control system BattleControl that has one function OrderToFire. The function 
OrderToFire can occur at any point in time within any sequence, such as  

< Start, BattleControl.OrderToFire, LocateTarget, Stop >, and 

< Start, LocateTarget, BattleControl.OrderToFire, Stop > 

If we put a critical region to enclose Start and OrderToFire, then no other actions, 
particularly OrderToFire in this example, can occurs between them. 
criticalreg { 

do ACTION:Tank.Start 
choice { 

  option [  
  do ACTION:Tank.Move 

  ] 
  option [ 

  do ACTION:Tank.LocateTarget 
  ] 
  option [ 

  do ACTION:Tank.Fire 
  ] 

} 
} 
do ACTION:Tank.Stop 

Hence, between the two sequences, only  

< Start, LocateTarget, BattleControl.OrderToFire, Stop > 

is a legitimate one, which describes a typical battle control procedure. Note that there is other 
ways to achieve the same effect, such as putting LocateTarget as the precondition of 
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OrderToFire. 

3.5 Extended Use Scenario 

Use scenarios are useful for efficient system composition. Yet, additional information can be 
added to use scenario to improve the system's selection and composition effectiveness and 
scalability. Specifically, the following information can be added: 

 Dependency information; 

 Categorization; and 

 Hierarchical use scenarios. 

3.5.1 Dependency information 

In addition to the information specified in use scenarios for how to use the given system, it is 
useful to add dependency information.  

• Dependencies Specification 

Dependencies specification describes other systems that need to be included for this system to 
function. Some system may not provide full function by itself. It needs to use the services 
provided by other systems. Thus, the other systems that are used together with this system 
need to be included in the system dependencies list.  

• Compatible components list 

The compatible components list is a list of other systems that are known to be able to work 
with the system. With this list, the system composition and re-composition can be done more 
efficiently.  

In a C2 system, the dependency list and compatible component list are very important for 
composing a C2 system. For example, for an aircraft carrier: 

• Dependencies: Destroyer, Frigate, and Submarine.  

• Compatible components: Helicopter, Fighter plane, and Scout.  

With the information specified above, the composition process will be greatly eased. When 
putting an aircraft carrier into a C2 system, users will know that the destroyer, frigate and 
submarine are also needed. Also, the users will know it is compatible to put helicopters, fighter 
planes, and scouts on the aircraft carrier but not the battle tanks. 
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3.5.2 Categorization 

A system can provide multiple services. Different services provided by the system may have 
different use scenarios. Furthermore, a system working with different systems may have different 
use scenarios. For better organization, the use scenarios need to be categorized. A set of use 
scenarios describing the usage of one specific service provided by this system can be put into the 
same category. Each system can be assigned with a category tree of use scenarios.  

For example, in a C2 system, there is usually a command center which controls the overall battle. 
Since multiple units, say Fleet 1, fleet 2, and Fleet 3, are all involved in the battle, the command 
center needs to coordinate the battle and provides services for the Fleets, respectively. To better 
organize the design, the use scenarios must be categorized accordingly.  

3.5.3 Hierarchical Use Scenario  

Use scenario can be hierarchical. A higher level use scenario can call lower level use scenarios. 
Also, a higher level use scenario may specify the use of more than one subsystem. In this case, 
the high level use scenario specifies the overall process and can be broken down into several low 
level use scenarios by scenario slicing.  

For example, in the service provided for the Army in the command center, it controls the battle 
on ground. The use scenarios are specified to coordinate infantry and battle tanks. In this case, 
the use scenario in the command center invokes the Army use scenarios which in turn invokes 
the use scenarios specified for infantry. The use scenario hierarchy is constructed in this way.  

3.6 System Composition 

Complex mission often requires collaboration among multiple participating systems. Each 
participating system (subsystem) in a complex system (system of systems) focuses on handling 
one aspect of the overall mission. It is important for each subsystem to be specified with system 
scenarios as well as use scenarios.  

3.6.1 System Composition Approach 

The bottom-up approach is more efficient to build a new composite system once the system 
scenarios and use scenarios are known.  

With system scenarios, multiple analyses (dependency analysis, C&C analysis, event analysis, 
simulation, model checking) can be done to evaluate the system. Furthermore, automated system 
testing and verification with verification patterns can provide us with confidence of the quality 
assurance of the selected system. Once we have verified and validated the individual subsystems, 
we can build complex system on top of them.  

Firstly, we need to find appropriate systems for system composition. The system discovery and 
selection can be done by analyzing the system scenarios. Then, we can compose the individual 
subsystems into the complex system we need by connecting the systems according to the use 
scenarios.  
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If a use scenario calls the use scenarios of subsystems, it specifies the interoperation among 
several different subsystems. In this case, the use scenarios play the role of system composition 
pattern.  

System 1

System Scenario

System C

System A System A.3

System A.2

System A.1

Use ScenarioSystem Scneario

System B
Use ScenarioSystem Scneario

Use Scenario

Use Scenario

 
Figure 2: System Specification: System Scenarios and Use Scenarios 

Figure 2 shows the composition information of a complex system 1 and three subsystems. In 
system 1, there are 3 subsystems: system A, system B and system C, each of which is specified 
with system scenarios and use scenarios. System scenarios for each subsystem provide 
information on what services this system provides. The system scenarios are useful for system 
selection. Assume complex system 1 requires 3 major functions and these functions can be 
provided by the systems A, B, and C, respectively. In this case, these systems are selected to be 
the subsystems of system 1. Once we have system A, B, and C, we need the information on how 
to put them together so that they can work with each other to provide the higher level 
functionalities needed by system 1. If we have interface information only for systems A, B, and 
C, we may not obtain the functionalities required by system 1 because we do not know how to 
call the interfaces of each subsystem. On the other hand, if each subsystem is specified with use 
scenarios, the integration becomes possible.  

A use scenario can have templates. In such a template, we may specify what concrete system we 
need. If a system provides the functionalities specified in the system scenario, it can be used as 
subsystem. In Figure 2, there are three subsystems, system A.1, A.2, A.3 provides the same 
functionalities. Each of these subsystems can be a valid candidate for the composition. These 
subsystems may be ranked with different criteria by the automated testing tools. Appropriate 
subsystem can be added to the composition system according to different system performance 
requirements. What system to be chosen will be decided at the system run-time (Dynamic 
Binding).  

Use scenarios for a lower level subsystem can be converted to system scenario for a higher level 
system. In Figure 2, when the use scenarios of system A, B, and C are combined together, we can 
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generate system scenarios of system 1. Also, use scenarios for system 1 may be generated 
automatically or be specified by system designers. With the system scenarios and use scenarios 
for system 1 are identified, we can build a higher level system using system 1 as subsystem.  

3.6.2 System Composition Examples 

We use a simple C2 system here to illustrate how to compose a complex system of systems using 
existing components. In this example, we have three constituent systems: Tank control system, 
Security control system, and Policy control system. These three systems need to collaborate with 
each other after being deployed in the battle field. Without use scenario, the commanders may 
not know how to make these three systems working together since they have no idea about when 
to do the security check or / and when to apply the policy checking during the battle in progress. 
If the use scenarios have been specified, the commanders can simply follow the predefined 
sequence, if no better choices are available, for controlling these two systems. 

Example 2: 

This example shows how to perform interoperation scenario correctness checking and compose 
the correct complex system. Assume that control systems Tank, Security, and Policy are 
involved. 

This is the use scenario for tank control system: 
do ACTION:Account.Open 
choice { 
 option [  

{do ACTION:<Security>.VerifyPassword} precond  
 do ACTION:Tank.Move 

 ] 
 option [ 

 do ACTION:Tank.LocateTarget 
 ] 
 option [ 
 {do ACTION:<Policy>.ApprovePolicy} precond 

 do ACTION:Tank.Fire 
 ] 
} 
do ACTION:Tank.Stop 

This is the use scenario for security control system: 
do ACTION:Security.VerifyPassword postcond  
{ 
 do ACTION:<Tank>.Move 
 do ACTION:<Policy>.ApprovePolicy 
} 
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This is the use scenario for Policy control system: 
{do ACTION:<Security>.VerifyPassword} precond 

do ACTION:Policy.ApprovePolicy 

There is an interoperation sequence for the system envolved: 
do ACTION:Tank.Start 
do ACTION:Policy.ApprovePolicy 
do ACTION:Tank.Fire 
do ACTION:Tank.Stop 

The interoperation scenario satisfies the use scenarios of Tank and Security. But in Policy, 
it requires that before ApprovePolicy, it needs to perform VerifyPassword. Hence the 
interoperation scenario is not correct. The correct one is: 
do ACTION:Tank.Start 
do ACTION:Security.VerifyPassword 
do ACTION:Policy.ApprovePolicy 
do ACTION:Tank.Fire 
do ACTION:Tank.Stop 

Example 3: 

This example shows how to perform the system composition and interoperability cross checking. 
Assume that the control system Tank is to interoperate with another control system, the 
Security, which performs specific security check. 

This is the use scenario for tank control system: 
do ACTION:Tank.Start 
choice { 
 option [  

{do ACTION:<Security>.VerifyPassword} precond  
 do ACTION:Tank.Move 

 ] 
 option [ 

{do ACTION:<Security>.VerifyPassword} precond  
 do ACTION: Tank.LocateTarget 

 ] 
 option [ 

{do ACTION:<Security>.VerifyPassword} precond  
 do ACTION:Tank.Fire 

 ] 
} 
do ACTION:Tank.Stop 
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The use scenario for security control system is then: 
do ACTION:Security.VerifyPassword postcond  
{ 

do ACTION:<Tank>.Move 
do ACTION:<Tank>.Fire 

} 

The use scenario of Tank and Security are listed above. With the precondition or / and 
postcondition specified, we can know that the sequence 

< Start, Security.VerifyPassword, Move, Stop > 

is a correct calling sequence but  

< Start, Move, Security.VerifyPassword, Stop > 

is not a correct one since the action VerifyPassword needs to be done before anybody can 
Move the tank according to the use scenarios.  

The interoperability cross checking can detect potential inconsistency for the use scenarios. In 
the use scenarios specified above, system Tank requires verifying password before any 
operation on the Tank, while Security enables Fire and Move after verifying password, 
without mentioning LocateTarget. A cross checking shows a potential inconsistency, which 
is not necessary an error. Either Account enforces an unnecessary strong precondition on 
LocateTarget, or Security enables an insufficient weak postcondition on 
VerifyPassword. 

3.7 System Re-configuration and Re-composition 

After a complex system is composed using subsystems, it may be re-composed statically or 
dynamically. When a composite system is running, the individual subsystems may not satisfy the 
performance or functional requirement for achieving a mission. When a subsystem is considered 
as not satisfying, we can recompose the composite system by replacing the individual 
subsystems or adding new subsystems. The dynamic re-configuration needs to be done 
dynamically during the system run-time [15].  

In Figure 2, suppose we have chosen system A.1 as the subsystem to compose system 1. During 
the system run-time, system A.1 may not satisfy the performance requirement. In this case, the 
malfunction of system A.1 will be detected and subsystem A.2 or A.3 will be plugged into the 
system to replace subsystem A.1.  

Users may want to change the architecture of the composition system. The re-composition still 
needs to follow the specification in the use scenarios. Once a system is re-composed, it can be 
deployed rapidly. Also, it is possible that the users can add a new subsystem into the composed 
system or remove and / or replace a non-active subsystem in the system runtime. 
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4. Conclusion 

Based on use scenarios, we proposed the concept of semantic interoperability which extends the 
general semantics beyond the concept of ontology. Once a system is specified with use scenarios, 
it can be used by other systems by simply following the steps defined in the use scenarios. 
Furthermore, the analysis capabilities included in the use scenarios can be used to automatically 
verify and validate the correctness of system composition, which significantly increases the 
confidence and reduces the effort to verify and validate the system..  
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