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Abstract 
This paper presents an application of Point-Interval logic (PIL) for the problem of planning time-
sensitive aspects of a mission. The logic incorporates both point and interval structures of time 
associated with mission activities and also provides for qualitative and quantitative descriptions of 
temporal requirements among mission activities. An algorithm is presented that extends the 
inference engine of PIL for mission planning application. The planning approach is demonstrated 
with the help of a small illustrative mission planning problem with non-trivial temporal constraints. 
The temporal formalism with its descriptive input language, an inference engine for reasoning about 
generated plans, and the planning algorithm has been implemented in the form of a software tool.  

1 Introduction 

The time-sensitive aspects of a mission require a planner to sequence time intervals (or points) 
associated with mission activities, or services required, without violating any of the system 
specification, given a priori as part of a doctrine and/or as an outcome of a mission assessment 
process. This makes mission planning a constraints satisfaction problem in terms of temporal 
constraints between the mission activities together with resource availability constraints. In most 
real world situations, the dynamic nature of a domain may require revising a produced plan in terms 
of new added constraints and/or modified old requirements. A temporal constraint satisfaction 
formalism, used for mission planning, must therefore be able to (a) generate a feasible plan 
satisfying all the (temporal) constraints, or report infeasibilities present in the specifications; (b) 
allow a plan to be revised with minimal perturbation; (c) compare the generated alternate plans on 
the basis of some pre-defined performance criteria; and (d) provide a graphical representation of 
system specifications, and the generated plans, preferably capable of modeling information at 
different levels of abstraction.  
The paper employs a point-interval formalism PIL (Zaidi and Levis 2001), which is an extension of 
Allen’s interval logic (Allen, 1983), for constructing such a planner. PIL is a tractable point and 
interval formalism which handles both qualitative and quantitative temporal constraints. It provides 
the capability of revising a feasible temporal system by making minimum change to the system 
without violating the existing constraints. It is a graph-based approach with a specialized graph 
representation, called Point Graph (PG), to model the temporal statements/constraints. The 
graphical properties of the point graph help decide the feasibility of the system in polynomial time 
and require linear searches to identify feasible relations between points/intervals. The contribution 
in this paper offers an enhancement that extends the capabilities of the PIL based planner beyond 
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that of Zaidi and Wagenhals’ [2005], in particular, and of existing graph-based operations research 
formalisms, e.g. CPM and PERT (Moder and Philips 1970), in general.  The integration of PIL’s 
language, knowledge representation mechanism, inference engine, and the proposed planning 
algorithm results in a planning tool with an expressive language for specification of temporal 
relations among points and intervals representing activities in a mission and an ability to generate 
alternate solutions to perform what-if analysis. It is also superior to mathematical programming 
approaches to planning for it does not require a plan to be regenerated from scratch in case of any 
changes (revisions) to mission specifications.  
The paper concludes with a fictitious but real world example to illustrate how the approach 
presented could be applied to military planning and execution problems. The facts and constraints 
that apply to the mission at hand are input using language of PIL. The mission constraints are then 
converted into corresponding point graph representation and checked for any inconsistencies or 
temporal anomalies. Once a consistent point graph representation of the mission requirements has 
been built, it can be used to capture useful parameters associated with mission activities. Some of 
these parameters which provide useful insight for the mission planner are: earliest occurrence time 
of an activity, late occurrence time, latest occurrence time, whether or not an activity is critical, and 
the values of the various time slacks available to the planner, e.g., total float, free float, and stretch 
float. Since the approach provides the revision capability, the mission planner can change some of 
the constraints, before and/or during the plan execution, and perform what-if analyses. The 
illustration demonstrates the use of point-interval logic and point graphs for such an interactive 
time-sensitive mission planning exercise. 
The paper is organized as follows: Section 2 presents Point Graphs (PG), Point Interval Logic (PIL) 
and a brief discussion on the verification mechanism. Section 3 presents a planning application and 
an analysis technique that identifies the critical activities and time slacks for the non-critical 
activities. An illustration of the approach is given in Section 4 with the help of an example. Section 
5 gives a brief discussion on the contribution of this paper. 

2 Point Graph and Point Interval Logic 

Definition 1 Point Graph 

A Point Graph PG (V, EA, D, T) is a directed graph with: 

V: Set of vertices with each node or vertex v ∈ V representing a point on the real number line. 
Two points pX and pY are represented as a composite point [pX;pY] if both are mapped to a 
single point on the line. 

EA: Union of two sets of edges: EA = E ∪ E≤, where 

E:  Set of edges with each edge e12 ∈  E, between two vertices v1 and v2, also denoted as (v1, 
v2), representing a relation ‘<’ between the two vertices - (v1 < v2). The edges in this set are 
called LT edges; 

E≤: Set of edges with each edge e12 ∈  E≤, between two vertices v1 and v2, also denoted as (v1, 
v2), representing a relation ‘≤’ between the two vertices - (v1 ≤ v2). The edges in this set are 
called LE edges. 

D  (Length) Edge-length function (possibly partial): 

  E → ℜ +. 

T  (Stamp) Vertex-stamp function (possibly partial): 

 V → ℜ. 



In a temporal situation the ‘<’ edge between two nodes in a PG, corresponds to the temporal 
relation ‘Before.’ Similarly, the ‘≤’ edge represents the relation ‘Precedes’ which can also be 
represented as a disjunctive temporal relation ‘Before or Equals’ written as {Before, Equals}. It can 
be easily shown that the PG formalism captures all the temporal relations of Pointisable Algebra 
(Ladkin and Maddux 1988) with the exception of ‘≠’ (not-equal-to) relation. The graph formalism 
can be extended to include this relation; however, the issue is not discussed in this paper. 

The Point Interval Logic (PIL), on the other hand can be defined with the help of its lexicon, which 
consists of the following primitive symbols: 

Points (Event):  

A point X is represented as [pX, pX] or simply [pX].  

Interval:  

An interval X is represented as [sX, eX], where ‘sX’ and ‘eX’ are the two end points of the interval, 
denoting the ‘start’ and ‘end’ of the interval, s.t. sX < eX. 

Point Relations:  

These are the relations that can exist between two points. The set of relations RP is given as:  

RP  = {Before, Equals, Precedes} 

Interval Relations:  

These are the atomic relations that can exist between two intervals. The set of relations RI is given 
as: 

RI = {Before, Meets, Overlaps, Starts, During, Finishes, Equals} 

Point-Interval Relations:  

These are the atomic relations that can exist between a point and an interval. The set of relations R� 
is given as:  

RPI = {Before, Starts, During, Finishes} 

Functions: 

Interval length function that assigns a non-zero positive real number to a system interval e.g.  

Length X = d, where d ∈ ℜ .  

The stamp function assigns a real number to a system point e.g. 

 Stamp p1 = t, where t ∈ ℜ. 

A system of PIL statements, also termed as a temporal system, is given by a conjunction of 
statements each describing a PIL relation between a unique pair of intervals/points. 
The syntactic and semantic structure of atomic relations in PIL is shown in Table 1. A qualitative 
relation between two intervals (or points) can be described with the help of algebraic inequalities, 
also shown in Table 1, among points representing the start and end of these intervals. Given the 
definition of a PG and the set of inequalities (in Table 1) representing temporal relations between 
intervals/points, it is straightforward to devise a mechanism to convert a PIL statement to its PG 
representation. Figure 1 presents a three-node Point Graph with vertex stamps and arc length and 
the corresponding PIL system represented by the PG. 
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Figure 1.  PG Representation of PIL Statements 

Table 1.  PIL Expressions and Their Semantics 

CASE I— X and Y both intervals with non-zero lengths:   
X = [sx, ex], Y = [sy, ey] with sx < ex and sy < ey 
 

1. X Before Y     ex < sy           X Ysx ex sy ey
 

2. X Meets Y  ex = sy               
X Y

 3. X Overlaps Y  sx < sy;   sy < ex;  ex < ey   X
Y

 

4. X Starts Y   sx = sy;  ex < ey                
X

Y  

5. X During Y  sx > sy;  ex < ey                X
Y  

6. X Finishes Y  sx > sy;  ey = ex                 X 
Y 

 

7. X Equals Y sx = sy; ex = ey             X
Y  

CASE II—X and Y both points: X = [px] and Y = [py]  
 
Before:  X < Y  px < py    

X
px

Y
py

• •  
Equals:  X = Y  px = py       [X;Y]

•
 

CASE III— X is a point and Y is an interval: X = [px] and Y = [sy, ey]  
 
Before:  X < Y  px < sy                

YX
•  

Starts:   X s Y  px = sy       
YX

•  
During:  X d Y   sy < px < ey    

YX
•  

Finishes:  X f Y   px = ey       
Y X

•  
Before:  Y < X   ey < px              

Y X
•  

A set of PIL statements can now be represented as a set of PGs where each PG corresponds to a 
single statement in the temporal system. A consolidated PG for the entire temporal system can be 
constructed by unifying and folding the individual PGs (Zaidi and Wagenhals 2005). The unification 
looks at the nodes of a set of PGs and merges the nodes with identical node labels or the ones with 
equality relation between them. The folding process, on the other hand, looks at the quantitative 
information on nodes, and edges, of a PG and folds the edges based on the available information. 
Figure 2 illustrates the process of constructing a PG for a set of PIL statements with the help of an 
example.  
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Figure 2.  Steps in PG Construction 

2.1 Verification of PIL Statements 

The presence of inconsistent information in a temporal system results in an erroneous PG, which 
may result in erroneous inferences and/or analyses preformed on the PG. It is, therefore, imperative 
to identify and correct the inconsistent cases prior to any analysis. Theorem 1 characterizes the 
inconsistencies both with respect to relations in a PIL system and with respect to its PG 
representation.  

Theorem 1 Inconsistency in PIL  
A system’s description in PIL contains inconsistent information iff 
a) For some intervals/points X and Y, and atomic PIL relations Ri and Rj, both ‘X Ri Y’ and ‘X Rj 

Y’, i ≠ j, or ‘X Ri Y’ and ‘Y Ri X’ (with the exception of  ‘Equals’ relation) hold true; or 
b) For a point p1, the system calculates two different stamps; or 
c) For some points p1 and p2, ‘p1 < p2’, the system can determine two different lengths for the 

interval [p1, p2]. 
A path-consistency algorithm that employs techniques by Busacker (1965) and Warshall’s 
algorithm (Warshall 1962), is presented in Zaidi and Wagenhals (2005) for identifying the 
erroneous cases in the PG representation. Figure 3 shows an inconsistent point graph 
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Figure 3.  An inconsistent PG 

3 Application to Planning 

This section presents an application of Point Graphs and Point Interval Logic, presented in Section 
2, for modeling and planning temporal aspects of projects/missions. The approach presented in this 
section requires the temporal constraints of a mission to be converted to PIL statements. The 
temporal system is then converted to its PG representation. The PG, so obtained, is processed by 
applying unification. A necessary condition for the application of the algorithms presented in this 
section also requires that the length function of the PG, so constructed, be a total function, i.e., 
every ‘Before’ relationship be specified with a length of the interval involved. A temporal system 
that does not conform to this condition can be pre-processed, without violating any temporal 
requirements, by replacing every relation of the type ‘X < Y’ between two points X and Y with 
relations ‘X < Z’, ‘Length[X, Z] = d’, and ‘Z ≤ Y’, where Z is a dummy activity and d is a user-
defined smallest time increment, e.g. for systems with only integer lengths and time stamps, d = 1. 
The unified PG is checked for inconsistency and temporal anomalies. Finally the folding process is 
applied to the PG. 
In order to construct a model of the temporal system, the PG is added with a pair of source and sink 
nodes (Definition 2). The time stamps on individual nodes are not considered in the approach; the 
stamps can be ignored without any loss of generality. The time stamp can be easily incorporated 
either before or after the analysis that follows. Once a plan is constructed using the approach, the 
plan can be shifted on a timeline to match with the stamps provided in the input PIL statements. 

Definition 2 Source and Sink Nodes to PG 
A source node Vin and a sink Vout node are added to the PG representation of a system of PIL 
statements by applying the following: 
a) ∀vi, vi ∈ V such that *v = φ (i.e., null set), connect the source node Vin to all vi by LE type 

edges (Vin, vi); 
b) ∀vi, vi ∈ V such that v* = φ, connect the sink node Vout to all vi by LE type edges (vi, Vout). 
The graph-based approach assigns three parameters to each node in the PG representation. The 
parameter values are calculated by running the two algorithms, Forward-Reverse* followed by 
Reverse-Forward*, on the graph. The values of these parameters help determine the critical 
activities and time floats/slacks for intervals in the system, and interval/point activities defined for 
the PG under consideration. The three parameters are termed as earliest occurrence (Ev), late 
occurrence (Lv), and latest occurrence (Tv) of a node ‘v’, and are formally defined in Definitions 3-
5. The analysis applies two algorithms (Algorithms 1-2) on the PG using the Forward and Reverse 
passes in Definitions 3-5. The first calculates the value for the earliest occurrence time of a node; 
the other calculates the values for the late and latest occurrences of a node in the PG. Figures 4-5 
illustrate the two passes with the help of example cases. 

Definition 3 Earliest Occurrence, Ev – Forward Pass 



The earliest occurrence Ev of a node v, v ∈ V, is defined to be the smallest time stamp on the node 
that satisfies the earliest occurrences of the preceding nodes, i.e.,  

Let *v = {vi} 
  Evi + D (vi, v),  for (vi, v) ∈ E and |*v| = 1 

Ev =  
max

i [Evi],   ∀(vi, v) ∈ E≤ 

  
max

i [Evi, Evk + D(vk, v)], for (vk, v) ∈ E 
   0,     otherwise 

 
For a non-critical interval/activity [v1, v2] (Definitions 6-8), Ev1 represents the earliest start time 
of the activity. 

Definition 4 Late Occurrence, Lv  – Reverse Pass I 
The late occurrence Lv of a node v, v ∈ V, is defined to be the largest time stamp on the node that 
satisfies the earliest occurrences of the following nodes, i.e., 

Let v* = {vi} 
   Lvi − D(v, vi),   for (v, vi) ∈ E and |v*| = 1 

   Lv  = 
min

i [Evi],   ∀(v, vi) ∈ E≤  

  
min

i [Evi, Lvk − D(v, vk)], for (v, vk) ∈ E 
  Ev,    otherwise 

Definition 5 Latest Occurrence, Tv – Reverse Pass II 
The latest occurrence Tv of a node v, v ∈ V, is defined to be the largest time stamp on the node that 
satisfies the latest occurrences of the following nodes, i.e.,  

Let v* = {vi} 
   Tvi − D(v, vi),  for (v, vi) ∈ E and |v*| = 1 

    Tv  = 
min

i [Tvi],   ∀(v, vi) ∈ E≤ 

  
min

i [Tvi, Tvk − D(v, vk)],  for (v, vk) ∈ E 
  Ev,    otherwise 
 
For a non-critical interval/activity [v1, v2], Tv2 represents the latest completion time of the activity. 
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Figure 4.  Illustration of Forward Pass 

Algorithm 1 Forward-Reverse* 



Apply Forward Pass to the entire PG starting from the source node Vin. 
Loop |E| times. 

Set Flag = false. 
Loop for each edge (vi, vj) ∈ EA. 

If (vi, vj) ∈ E≤ then 
   If Ei > Ej then 
    Set Ej = Ei. 
    Set Flag = true. 

Else 
   If Ej > Ei + D(vi, vj) then 
    Set Ei = Ej - D(vi, vj). 
    Set Flag = true. 

Else If Ej < Ei + D(vi, vj) then 
    Set Ej = Ei + D(vi, vj). 
    Set Flag = true. 

If (Flag = false) then exit Loop. 
 

j i 
Ej|Lj|Tj

Li = Lj − d
Ti = Tj − d

d 
(a) 

 
 

k 

i Ek|Lk|Tk

Li = min(Ej, Ek) 
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Figure 5.  Illustration of Reverse Pass 

Algorithm 2 Reverse-Forward*–I 
Apply Reverse Pass I to the entire PG starting from the sink node Vout. 
Loop |E| times. 

Set Flag = false. 
Loop for each edge (vi, vj) ∈ EA. 

If (vi, vj) ∈ E then 
   If Lj > Li + D(vi, vj) then 
    Set Lj = Li + D(vi, vj). 
    Set Flag = true. 

Else If Lj < Li + D(vi, vj) then 
   Set Li = Lj - D(vi, vj). 
   Set Flag = true. 

If (Flag = false) then exit Loop. 
 
A variant of Algorithm 2 is applied to calculate Tv for all v ∈ V. 

Definition 6 Point Activity 



A node v ∈ V is called a point activity. A point, start of an interval and end of an interval, are all 
point activities in the PG representation of a PIL system. 

Definition 7 Interval Activity 
An interval [v1, v2], where v1, v2 ∈ V, is called an interval activity if the two time points 
represented by the nodes v1 and v2 are the two end points of a path comprising of LT type edges 
only.  

Definition 8 Critical Activity 
An activity is defined to be critical if: 

(a) A delay in its start will cause a delay in the completion time of the entire mission, i.e., 
i. For a point activity v ∈ V, Ev = Tv; for an interval activity [v1, v2], where v1, v2 ∈V, v ∈ 

{v1, v2}, Ev = Tv, or 
ii. For an interval activity, it ‘Meets’ or is met by another critical activity; for a point activity, it 

‘Starts’ and/or ‘Ends’ another critical activity. 

Definition 9 Total Float (TF) and Free Float (FF) 
Total Float (TF) is the difference between the maximum time available to perform an activity and 
its duration. Free Float (FF) for an activity is defined by assuming that all the activities start as early 
as possible, it is the excess time available over its duration. 

(a) Total float (TF) and free float (FF) for a non-critical point activity v are calculated as: 
TFv = Tv − Ev 
FFv = Lv − Ev 

(b) Total float (TF) and free float (FF) for a non-critical interval activity [v1, v2] are calculated 
as: 

TF[v1, v2]  = Tv2 − Ev2  = Tv1 − Ev1 
 FF[v1, v2]  = Lv2 − Ev2 = Lv1 − Ev1 
(For all critical activities TF = FF = 0.) 
Finally the PG corresponding to a mission’s requirements with the values of the parameters 
calculated, can be used to construct a time chart, e.g. Gantt chart, showing the start and finish times 
for each activity as well as its relationship to other activities. For non-critical activities the plan also 
shows the amount of slacks or floats that can be used advantageously when such activities are 
delayed or when limited resources are to be used. The PG representation and the time chart can, 
therefore, be used for a real-time and periodic control of the plan. The PG may be updated and 
analyzed, and if necessary a new plan/schedule is determined for the remaining portion of the 
mission in a dynamic environment. 

4 Illustrative Example : Mission Planning 

This section provides a fictitious but real world example to illustrate how the approach presented in 
this paper could be applied to military planning and execution problems. The example scenario has 
been taken from Zaidi and Wagenhals (2005) for an illustration of the approach. The illustration is 
for a precision engagement against a Time Critical Target (TCT). To do this, a scenario is presented 
in which several assets must concurrently perform activities with implicit synchronization in order 
to attack a target of importance.  The target is time critical in that it is difficult to locate and when it 
is located, it must be struck in a very short time, otherwise it will disappear.   
Assume the following facts and constraints apply to the planning for precision engagement of TCTs.  
There is a list of high value TCTs that when located and identified need to be attacked quickly with 
precision engagement weapons.  When such a target is found, a weapon platform such as an attack 
aircraft must ingress to a weapon launch point to release a precision-guided weapon (PGW). During 
the ingress, the on-board navigation and guidance processor of the PGW will be uploaded with the 



precise data it needs to fly to and hit the target.  During the ingress and PGW update activities, a 
local, on site, aid to the navigation and guidance activity must participate in providing updates to 
the PGW.  This local, on site activity must cease just prior to the weapon striking the target.  Once 
the weapon is launched, the launch platform egresses the area.   

Table 2.  Mission Requirements 

Interval 
ID 

Activity Description Corresponding
PIL Statement 

A Weapon Platform ingresses to PGW launch point Length A = 5 

B Weapon Platform egresses from PGW launch point Length B = 5 

C Target parameters are uploaded into the PGW navigation processor Length C = 5 

D PGW is launched and flies to the Target Length D = 2 

E Local, on site activity provides navigation and guidance update to 
PGW 

Length E = 10 

Table 3.  Additional Constraints 

 
Natural Language Description 

 

Corresponding 
PIL Statement 

The platform will not loiter in the area due to threat considerations  A meets B 

The PGW is launched immediately after the target parameters are uploaded C meets D 

The PGM launch precedes the egress  
 

C Precedes B 

Local, on site activity must cease just prior to weapon striking the target eE Precedes eD 

 
The plan for this scenario can be mapped to PIL statements presented in Table 2. The table shows 
the five activities together with the PIL statements representing the mission operational concept. 
The additional constraints are described in Table 3 with their corresponding PIL statements. The 
reader should note that the temporal requirements described by ‘eE Precedes eD’ (eE and eD 
represent the end points of intervals E and D, respectively) and the combination of ‘A meets B’ and 
‘C Precedes B’ cannot be handled by existing critical path methods. These constraints represent 
partial-order relations between the intervals E and D, and between intervals A and C. A partial-
order relation is a relation that might not total order the intervals of the temporal system. Instead, it 
specifies constructs (< and/or ≤) among all combination of start and end points of the interval 
involved. The existing critical path methods can not handle partial-order relations. 
These mission requirements are converted to the corresponding PG representation as shown in 
Figure 6. Note the source node Vin and sink node Vout representing the start and completion of the 



mission, respectively. Table 4 shows the attributes of the various activities involved in the mission. 
From this table, the minimum time required to execute the mission is 13 time units (perhaps 13 
minutes). Furthermore, the start and end times of all activities are captured in the PG.  All the 
activities are critical. The values in Fig. 6, therefore, show the only feasible schedule for the 
activities involved for the mission duration of 13 time units. Thus the local, on site activity starts at 
time 0, the Ingress and the PGW upload start at time 3.  The PGM launch occurs at time 8 and 
commences the Egress activity. The PGW strikes the target at time 10 just after the local, on site 
activity ceases.  This plan provides a total mission view that can be used to provide, to the 
individual resources that are carrying out the plan, the critical start and complete times for their 
activities to ensure that the implicit synchronization of the concurrent activities is accomplished.  

 
 

Figure 6.  Point Graph for the mission 

Table 4.  Attributes of Mission Activities 
Activity Duration Earliest 

Start 
Time 

Latest 
End 
Time 

Critical Total 
Float 

Free 
Float 

A 5 3 8 yes 0 0 

B 5 8 13 yes 0 0 

C 5 3 8 yes 0 0 

D 2 8 10 yes 0 0 

E 10 0 10 yes 0 0 

5 Conclusion 

The approach presented in this paper extends the classical duration-based quantitative approaches 
for planning and project management by adding the provision for point (instantaneous) activities 

0|0|0 
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0|0|0 10|10|10 

5 5 
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and specification of partially ordered relation between system activities. It also offers an expressive 
input language for planners to input their specifications. The approach is based on a logic that 
provides an added benefit for planners, especially when they need to analyze a generated plan 
and/or run a ‘what-if’ type analysis. A variant of the approach is presented by Zaidi and Wagenhals 
(2005) that introduces a notion of ‘Stretch Slack’ for critical activities. The two approaches, in our 
opinion, offer an effective toolkit for mission planners. The approach offers an enhanced formalism 
for planning in terms of its expressive language for specifications, provision for point and interval 
descriptions of temporal events, and a powerful inference engine. 
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