
10th International Command and Control Research and Technology Symposium
The Future of C2

1. Title: Time-Sensitive Planning Using Point-Interval Logic•

2. Topic: Assessment, Tools, and Metrics

3. Authors: Mashhood Ishaque* Abbas K. Zaidi

4. Point of Contact: Mashhood Ishaque

5. Organization: System Architectures Lab, George Mason University

6. Address: System Architectures Laboratory

MSN 4B5
George Mason University
Fairfax, VA - 22030
703.993.1725 (v)
703.993.1706 (f)

7. Email: mishaque@gmu.edu

Student Paper

• The work was carried out with support provided by the Air Force Office of Scientific Research
under contract numbers FA9550-05-1-0106.

Time-Sensitive Planning Using Point-Interval Logic•

Mashhood Ishaque and Abbas K. Zaidi
System Architectures Lab
George Mason University

Fairfax, VA – 22030
{mishaque,szaidi2}@gmu.edu

Abstract
This paper presents an application of Point-Interval logic (PIL) for the problem of planning time-
sensitive aspects of a mission. The logic incorporates both point and interval structures of time
associated with mission activities and also provides for qualitative and quantitative descriptions of
temporal requirements among mission activities. An algorithm is presented that extends the
inference engine of PIL for mission planning application. The planning approach is demonstrated
with the help of a small illustrative mission planning problem with non-trivial temporal constraints.
The temporal formalism with its descriptive input language, an inference engine for reasoning about
generated plans, and the planning algorithm has been implemented in the form of a software tool.

1 Introduction

The time-sensitive aspects of a mission require a planner to sequence time intervals (or points)
associated with mission activities, or services required, without violating any of the system
specification, given a priori as part of a doctrine and/or as an outcome of a mission assessment
process. This makes mission planning a constraints satisfaction problem in terms of temporal
constraints between the mission activities together with resource availability constraints. In most
real world situations, the dynamic nature of a domain may require revising a produced plan in terms
of new added constraints and/or modified old requirements. A temporal constraint satisfaction
formalism, used for mission planning, must therefore be able to (a) generate a feasible plan
satisfying all the (temporal) constraints, or report infeasibilities present in the specifications; (b)
allow a plan to be revised with minimal perturbation; (c) compare the generated alternate plans on
the basis of some pre-defined performance criteria; and (d) provide a graphical representation of
system specifications, and the generated plans, preferably capable of modeling information at
different levels of abstraction.
The paper employs a point-interval formalism PIL (Zaidi and Levis 2001), which is an extension of
Allen’s interval logic (Allen, 1983), for constructing such a planner. PIL is a tractable point and
interval formalism which handles both qualitative and quantitative temporal constraints. It provides
the capability of revising a feasible temporal system by making minimum change to the system
without violating the existing constraints. It is a graph-based approach with a specialized graph
representation, called Point Graph (PG), to model the temporal statements/constraints. The
graphical properties of the point graph help decide the feasibility of the system in polynomial time
and require linear searches to identify feasible relations between points/intervals. The contribution
in this paper offers an enhancement that extends the capabilities of the PIL based planner beyond

• The work was carried out with support provided by the Air Force Office of Scientific Research under contract
numbers FA9550-05-1-0106.

that of Zaidi and Wagenhals’ [2005], in particular, and of existing graph-based operations research
formalisms, e.g. CPM and PERT (Moder and Philips 1970), in general. The integration of PIL’s
language, knowledge representation mechanism, inference engine, and the proposed planning
algorithm results in a planning tool with an expressive language for specification of temporal
relations among points and intervals representing activities in a mission and an ability to generate
alternate solutions to perform what-if analysis. It is also superior to mathematical programming
approaches to planning for it does not require a plan to be regenerated from scratch in case of any
changes (revisions) to mission specifications.
The paper concludes with a fictitious but real world example to illustrate how the approach
presented could be applied to military planning and execution problems. The facts and constraints
that apply to the mission at hand are input using language of PIL. The mission constraints are then
converted into corresponding point graph representation and checked for any inconsistencies or
temporal anomalies. Once a consistent point graph representation of the mission requirements has
been built, it can be used to capture useful parameters associated with mission activities. Some of
these parameters which provide useful insight for the mission planner are: earliest occurrence time
of an activity, late occurrence time, latest occurrence time, whether or not an activity is critical, and
the values of the various time slacks available to the planner, e.g., total float, free float, and stretch
float. Since the approach provides the revision capability, the mission planner can change some of
the constraints, before and/or during the plan execution, and perform what-if analyses. The
illustration demonstrates the use of point-interval logic and point graphs for such an interactive
time-sensitive mission planning exercise.
The paper is organized as follows: Section 2 presents Point Graphs (PG), Point Interval Logic (PIL)
and a brief discussion on the verification mechanism. Section 3 presents a planning application and
an analysis technique that identifies the critical activities and time slacks for the non-critical
activities. An illustration of the approach is given in Section 4 with the help of an example. Section
5 gives a brief discussion on the contribution of this paper.

2 Point Graph and Point Interval Logic

Definition 1 Point Graph

A Point Graph PG (V, EA, D, T) is a directed graph with:

V: Set of vertices with each node or vertex v ∈ V representing a point on the real number line.
Two points pX and pY are represented as a composite point [pX;pY] if both are mapped to a
single point on the line.

EA: Union of two sets of edges: EA = E ∪ E≤, where

E: Set of edges with each edge e12 ∈  E, between two vertices v1 and v2, also denoted as (v1,
v2), representing a relation ‘<’ between the two vertices - (v1 < v2). The edges in this set are
called LT edges;

E≤: Set of edges with each edge e12 ∈  E≤, between two vertices v1 and v2, also denoted as (v1,
v2), representing a relation ‘≤’ between the two vertices - (v1 ≤ v2). The edges in this set are
called LE edges.

D (Length) Edge-length function (possibly partial):

 E → ℜ +.

T (Stamp) Vertex-stamp function (possibly partial):

 V → ℜ.

In a temporal situation the ‘<’ edge between two nodes in a PG, corresponds to the temporal
relation ‘Before.’ Similarly, the ‘≤’ edge represents the relation ‘Precedes’ which can also be
represented as a disjunctive temporal relation ‘Before or Equals’ written as {Before, Equals}. It can
be easily shown that the PG formalism captures all the temporal relations of Pointisable Algebra
(Ladkin and Maddux 1988) with the exception of ‘≠’ (not-equal-to) relation. The graph formalism
can be extended to include this relation; however, the issue is not discussed in this paper.

The Point Interval Logic (PIL), on the other hand can be defined with the help of its lexicon, which
consists of the following primitive symbols:

Points (Event):

A point X is represented as [pX, pX] or simply [pX].

Interval:

An interval X is represented as [sX, eX], where ‘sX’ and ‘eX’ are the two end points of the interval,
denoting the ‘start’ and ‘end’ of the interval, s.t. sX < eX.

Point Relations:

These are the relations that can exist between two points. The set of relations RP is given as:

RP = {Before, Equals, Precedes}

Interval Relations:

These are the atomic relations that can exist between two intervals. The set of relations RI is given
as:

RI = {Before, Meets, Overlaps, Starts, During, Finishes, Equals}

Point-Interval Relations:

These are the atomic relations that can exist between a point and an interval. The set of relations R�
is given as:

RPI = {Before, Starts, During, Finishes}

Functions:

Interval length function that assigns a non-zero positive real number to a system interval e.g.

Length X = d, where d ∈ ℜ .

The stamp function assigns a real number to a system point e.g.

 Stamp p1 = t, where t ∈ ℜ.

A system of PIL statements, also termed as a temporal system, is given by a conjunction of
statements each describing a PIL relation between a unique pair of intervals/points.
The syntactic and semantic structure of atomic relations in PIL is shown in Table 1. A qualitative
relation between two intervals (or points) can be described with the help of algebraic inequalities,
also shown in Table 1, among points representing the start and end of these intervals. Given the
definition of a PG and the set of inequalities (in Table 1) representing temporal relations between
intervals/points, it is straightforward to devise a mechanism to convert a PIL statement to its PG
representation. Figure 1 presents a three-node Point Graph with vertex stamps and arc length and
the corresponding PIL system represented by the PG.

p1 p2

4500

100

LT Edge

Interval
Length

p1 Before p2
p2 Precedes p3
Stamp p1 = 4500
Length[p1, p2] = 100

Stamp

 p3

LE Edge
4600

Figure 1. PG Representation of PIL Statements

Table 1. PIL Expressions and Their Semantics

CASE I— X and Y both intervals with non-zero lengths:
X = [sx, ex], Y = [sy, ey] with sx < ex and sy < ey

1. X Before Y ex < sy X Ysx ex sy ey

2. X Meets Y ex = sy
X Y

 3. X Overlaps Y sx < sy; sy < ex; ex < ey X
Y

4. X Starts Y sx = sy; ex < ey
X

Y

5. X During Y sx > sy; ex < ey X
Y

6. X Finishes Y sx > sy; ey = ex X
Y

7. X Equals Y sx = sy; ex = ey X
Y

CASE II—X and Y both points: X = [px] and Y = [py]

Before: X < Y px < py

X
px

Y
py

• •
Equals: X = Y px = py [X;Y]

•

CASE III— X is a point and Y is an interval: X = [px] and Y = [sy, ey]

Before: X < Y px < sy

YX
•

Starts: X s Y px = sy
YX

•
During: X d Y sy < px < ey

YX
•

Finishes: X f Y px = ey
Y X

•
Before: Y < X ey < px

Y X
•

A set of PIL statements can now be represented as a set of PGs where each PG corresponds to a
single statement in the temporal system. A consolidated PG for the entire temporal system can be
constructed by unifying and folding the individual PGs (Zaidi and Wagenhals 2005). The unification
looks at the nodes of a set of PGs and merges the nodes with identical node labels or the ones with
equality relation between them. The folding process, on the other hand, looks at the quantitative
information on nodes, and edges, of a PG and folds the edges based on the available information.
Figure 2 illustrates the process of constructing a PG for a set of PIL statements with the help of an
example.

 (a) S e t o f P IL S ta tem e n ts (b) C o n s tru c tio n o f P o in t G rap h

X , Y , Z in te rva ls

 X O ve r la p s Y

 L e n g th [s X , s Y] = 1 0

 L e n g th [s Y , e X] = 8

 Z O ve r la p s Y

 L e n g th [s Z , s Y] = 5

 L e n g th [s Y , e Z] = 8

(c) U n ific a t io n a n d R e su ltin g P G

 (d) B ra n c h F o ld in g

 (e) Jo in F o ld in g

eY eXsYsX
1 0

sYsX
1 0

8
eXsY

8

eY eZsYsZ
5

sYsZ
5

8
eZsY

8
sYsY

eY e XsYsX

eY eZsYsZ

1 0 8

5 8

eY
eX

sY
sX

eZsZ

1 0 8

5 8

sY

sX

sZ

5
5

e Y e X ;e ZsY

8
sX

sZ

1 0

5

e Y

8

e X ;e Z

Figure 2. Steps in PG Construction

2.1 Verification of PIL Statements

The presence of inconsistent information in a temporal system results in an erroneous PG, which
may result in erroneous inferences and/or analyses preformed on the PG. It is, therefore, imperative
to identify and correct the inconsistent cases prior to any analysis. Theorem 1 characterizes the
inconsistencies both with respect to relations in a PIL system and with respect to its PG
representation.

Theorem 1 Inconsistency in PIL
A system’s description in PIL contains inconsistent information iff
a) For some intervals/points X and Y, and atomic PIL relations Ri and Rj, both ‘X Ri Y’ and ‘X Rj

Y’, i ≠ j, or ‘X Ri Y’ and ‘Y Ri X’ (with the exception of ‘Equals’ relation) hold true; or
b) For a point p1, the system calculates two different stamps; or
c) For some points p1 and p2, ‘p1 < p2’, the system can determine two different lengths for the

interval [p1, p2].
A path-consistency algorithm that employs techniques by Busacker (1965) and Warshall’s
algorithm (Warshall 1962), is presented in Zaidi and Wagenhals (2005) for identifying the
erroneous cases in the PG representation. Figure 3 shows an inconsistent point graph

sY eY

sX

4

5
eX

d1 d2

d1 + 5 + d2 = 4, d1, d2 > 0
Figure 3. An inconsistent PG

3 Application to Planning

This section presents an application of Point Graphs and Point Interval Logic, presented in Section
2, for modeling and planning temporal aspects of projects/missions. The approach presented in this
section requires the temporal constraints of a mission to be converted to PIL statements. The
temporal system is then converted to its PG representation. The PG, so obtained, is processed by
applying unification. A necessary condition for the application of the algorithms presented in this
section also requires that the length function of the PG, so constructed, be a total function, i.e.,
every ‘Before’ relationship be specified with a length of the interval involved. A temporal system
that does not conform to this condition can be pre-processed, without violating any temporal
requirements, by replacing every relation of the type ‘X < Y’ between two points X and Y with
relations ‘X < Z’, ‘Length[X, Z] = d’, and ‘Z ≤ Y’, where Z is a dummy activity and d is a user-
defined smallest time increment, e.g. for systems with only integer lengths and time stamps, d = 1.
The unified PG is checked for inconsistency and temporal anomalies. Finally the folding process is
applied to the PG.
In order to construct a model of the temporal system, the PG is added with a pair of source and sink
nodes (Definition 2). The time stamps on individual nodes are not considered in the approach; the
stamps can be ignored without any loss of generality. The time stamp can be easily incorporated
either before or after the analysis that follows. Once a plan is constructed using the approach, the
plan can be shifted on a timeline to match with the stamps provided in the input PIL statements.

Definition 2 Source and Sink Nodes to PG
A source node Vin and a sink Vout node are added to the PG representation of a system of PIL
statements by applying the following:
a) ∀vi, vi ∈ V such that *v = φ (i.e., null set), connect the source node Vin to all vi by LE type

edges (Vin, vi);
b) ∀vi, vi ∈ V such that v* = φ, connect the sink node Vout to all vi by LE type edges (vi, Vout).
The graph-based approach assigns three parameters to each node in the PG representation. The
parameter values are calculated by running the two algorithms, Forward-Reverse* followed by
Reverse-Forward*, on the graph. The values of these parameters help determine the critical
activities and time floats/slacks for intervals in the system, and interval/point activities defined for
the PG under consideration. The three parameters are termed as earliest occurrence (Ev), late
occurrence (Lv), and latest occurrence (Tv) of a node ‘v’, and are formally defined in Definitions 3-
5. The analysis applies two algorithms (Algorithms 1-2) on the PG using the Forward and Reverse
passes in Definitions 3-5. The first calculates the value for the earliest occurrence time of a node;
the other calculates the values for the late and latest occurrences of a node in the PG. Figures 4-5
illustrate the two passes with the help of example cases.

Definition 3 Earliest Occurrence, Ev – Forward Pass

The earliest occurrence Ev of a node v, v ∈ V, is defined to be the smallest time stamp on the node
that satisfies the earliest occurrences of the preceding nodes, i.e.,

Let *v = {vi}
 Evi + D (vi, v), for (vi, v) ∈ E and |*v| = 1

Ev =
max

i [Evi], ∀(vi, v) ∈ E≤

max

i [Evi, Evk + D(vk, v)], for (vk, v) ∈ E
 0, otherwise

For a non-critical interval/activity [v1, v2] (Definitions 6-8), Ev1 represents the earliest start time
of the activity.

Definition 4 Late Occurrence, Lv – Reverse Pass I
The late occurrence Lv of a node v, v ∈ V, is defined to be the largest time stamp on the node that
satisfies the earliest occurrences of the following nodes, i.e.,

Let v* = {vi}
 Lvi − D(v, vi), for (v, vi) ∈ E and |v*| = 1

 Lv =
min

i [Evi], ∀(v, vi) ∈ E≤

min

i [Evi, Lvk − D(v, vk)], for (v, vk) ∈ E
 Ev, otherwise

Definition 5 Latest Occurrence, Tv – Reverse Pass II
The latest occurrence Tv of a node v, v ∈ V, is defined to be the largest time stamp on the node that
satisfies the latest occurrences of the following nodes, i.e.,

Let v* = {vi}
 Tvi − D(v, vi), for (v, vi) ∈ E and |v*| = 1

 Tv =
min

i [Tvi], ∀(v, vi) ∈ E≤

min

i [Tvi, Tvk − D(v, vk)], for (v, vk) ∈ E
 Ev, otherwise

For a non-critical interval/activity [v1, v2], Tv2 represents the latest completion time of the activity.

 j i

Ej = Ei + dEi
d

(a)

j

i Ej = max (Ei, Ek)

Ei

k
Ek

(b)

j

i Ej = max (Ei + d, Ek)

Ei

d

k
Ek

(c)

Figure 4. Illustration of Forward Pass

Algorithm 1 Forward-Reverse*

Apply Forward Pass to the entire PG starting from the source node Vin.
Loop |E| times.

Set Flag = false.
Loop for each edge (vi, vj) ∈ EA.

If (vi, vj) ∈ E≤ then
 If Ei > Ej then
 Set Ej = Ei.
 Set Flag = true.

Else
 If Ej > Ei + D(vi, vj) then
 Set Ei = Ej - D(vi, vj).
 Set Flag = true.

Else If Ej < Ei + D(vi, vj) then
 Set Ej = Ei + D(vi, vj).
 Set Flag = true.

If (Flag = false) then exit Loop.

j i
Ej|Lj|Tj

Li = Lj − d
Ti = Tj − d

d
(a)

k

i Ek|Lk|Tk

Li = min(Ej, Ek)
Ti = min(Tj, Tk)

j
Ej|Lj|Tj

(b)

k

i Ek|Lk|Tk

Li = min(Lj − d, Ek)
Ti = min(Tj − d, Tk)

d

j
Ej|Lj|Tj

(c)

Figure 5. Illustration of Reverse Pass

Algorithm 2 Reverse-Forward*–I
Apply Reverse Pass I to the entire PG starting from the sink node Vout.
Loop |E| times.

Set Flag = false.
Loop for each edge (vi, vj) ∈ EA.

If (vi, vj) ∈ E then
 If Lj > Li + D(vi, vj) then
 Set Lj = Li + D(vi, vj).
 Set Flag = true.

Else If Lj < Li + D(vi, vj) then
 Set Li = Lj - D(vi, vj).
 Set Flag = true.

If (Flag = false) then exit Loop.

A variant of Algorithm 2 is applied to calculate Tv for all v ∈ V.

Definition 6 Point Activity

A node v ∈ V is called a point activity. A point, start of an interval and end of an interval, are all
point activities in the PG representation of a PIL system.

Definition 7 Interval Activity
An interval [v1, v2], where v1, v2 ∈ V, is called an interval activity if the two time points
represented by the nodes v1 and v2 are the two end points of a path comprising of LT type edges
only.

Definition 8 Critical Activity
An activity is defined to be critical if:

(a) A delay in its start will cause a delay in the completion time of the entire mission, i.e.,
i. For a point activity v ∈ V, Ev = Tv; for an interval activity [v1, v2], where v1, v2 ∈V, v ∈

{v1, v2}, Ev = Tv, or
ii. For an interval activity, it ‘Meets’ or is met by another critical activity; for a point activity, it

‘Starts’ and/or ‘Ends’ another critical activity.

Definition 9 Total Float (TF) and Free Float (FF)
Total Float (TF) is the difference between the maximum time available to perform an activity and
its duration. Free Float (FF) for an activity is defined by assuming that all the activities start as early
as possible, it is the excess time available over its duration.

(a) Total float (TF) and free float (FF) for a non-critical point activity v are calculated as:
TFv = Tv − Ev
FFv = Lv − Ev

(b) Total float (TF) and free float (FF) for a non-critical interval activity [v1, v2] are calculated
as:

TF[v1, v2] = Tv2 − Ev2 = Tv1 − Ev1
 FF[v1, v2] = Lv2 − Ev2 = Lv1 − Ev1
(For all critical activities TF = FF = 0.)
Finally the PG corresponding to a mission’s requirements with the values of the parameters
calculated, can be used to construct a time chart, e.g. Gantt chart, showing the start and finish times
for each activity as well as its relationship to other activities. For non-critical activities the plan also
shows the amount of slacks or floats that can be used advantageously when such activities are
delayed or when limited resources are to be used. The PG representation and the time chart can,
therefore, be used for a real-time and periodic control of the plan. The PG may be updated and
analyzed, and if necessary a new plan/schedule is determined for the remaining portion of the
mission in a dynamic environment.

4 Illustrative Example : Mission Planning

This section provides a fictitious but real world example to illustrate how the approach presented in
this paper could be applied to military planning and execution problems. The example scenario has
been taken from Zaidi and Wagenhals (2005) for an illustration of the approach. The illustration is
for a precision engagement against a Time Critical Target (TCT). To do this, a scenario is presented
in which several assets must concurrently perform activities with implicit synchronization in order
to attack a target of importance. The target is time critical in that it is difficult to locate and when it
is located, it must be struck in a very short time, otherwise it will disappear.
Assume the following facts and constraints apply to the planning for precision engagement of TCTs.
There is a list of high value TCTs that when located and identified need to be attacked quickly with
precision engagement weapons. When such a target is found, a weapon platform such as an attack
aircraft must ingress to a weapon launch point to release a precision-guided weapon (PGW). During
the ingress, the on-board navigation and guidance processor of the PGW will be uploaded with the

precise data it needs to fly to and hit the target. During the ingress and PGW update activities, a
local, on site, aid to the navigation and guidance activity must participate in providing updates to
the PGW. This local, on site activity must cease just prior to the weapon striking the target. Once
the weapon is launched, the launch platform egresses the area.

Table 2. Mission Requirements

Interval
ID

Activity Description Corresponding
PIL Statement

A Weapon Platform ingresses to PGW launch point Length A = 5

B Weapon Platform egresses from PGW launch point Length B = 5

C Target parameters are uploaded into the PGW navigation processor Length C = 5

D PGW is launched and flies to the Target Length D = 2

E Local, on site activity provides navigation and guidance update to
PGW

Length E = 10

Table 3. Additional Constraints

Natural Language Description

Corresponding
PIL Statement

The platform will not loiter in the area due to threat considerations A meets B

The PGW is launched immediately after the target parameters are uploaded C meets D

The PGM launch precedes the egress

C Precedes B

Local, on site activity must cease just prior to weapon striking the target eE Precedes eD

The plan for this scenario can be mapped to PIL statements presented in Table 2. The table shows
the five activities together with the PIL statements representing the mission operational concept.
The additional constraints are described in Table 3 with their corresponding PIL statements. The
reader should note that the temporal requirements described by ‘eE Precedes eD’ (eE and eD
represent the end points of intervals E and D, respectively) and the combination of ‘A meets B’ and
‘C Precedes B’ cannot be handled by existing critical path methods. These constraints represent
partial-order relations between the intervals E and D, and between intervals A and C. A partial-
order relation is a relation that might not total order the intervals of the temporal system. Instead, it
specifies constructs (< and/or ≤) among all combination of start and end points of the interval
involved. The existing critical path methods can not handle partial-order relations.
These mission requirements are converted to the corresponding PG representation as shown in
Figure 6. Note the source node Vin and sink node Vout representing the start and completion of the

mission, respectively. Table 4 shows the attributes of the various activities involved in the mission.
From this table, the minimum time required to execute the mission is 13 time units (perhaps 13
minutes). Furthermore, the start and end times of all activities are captured in the PG. All the
activities are critical. The values in Fig. 6, therefore, show the only feasible schedule for the
activities involved for the mission duration of 13 time units. Thus the local, on site activity starts at
time 0, the Ingress and the PGW upload start at time 3. The PGM launch occurs at time 8 and
commences the Egress activity. The PGW strikes the target at time 10 just after the local, on site
activity ceases. This plan provides a total mission view that can be used to provide, to the
individual resources that are carrying out the plan, the critical start and complete times for their
activities to ensure that the implicit synchronization of the concurrent activities is accomplished.

Figure 6. Point Graph for the mission

Table 4. Attributes of Mission Activities
Activity Duration Earliest

Start
Time

Latest
End
Time

Critical Total
Float

Free
Float

A 5 3 8 yes 0 0

B 5 8 13 yes 0 0

C 5 3 8 yes 0 0

D 2 8 10 yes 0 0

E 10 0 10 yes 0 0

5 Conclusion

The approach presented in this paper extends the classical duration-based quantitative approaches
for planning and project management by adding the provision for point (instantaneous) activities

0|0|0

eA; sB sA

eC; sD sC eD

sE eE

Vout Vin

eB

3|3|3 8|8|8 13|13|13

3|3|3 8|8|8 10|10|10 13|13|13

0|0|0 10|10|10

5 5

5 2

10

and specification of partially ordered relation between system activities. It also offers an expressive
input language for planners to input their specifications. The approach is based on a logic that
provides an added benefit for planners, especially when they need to analyze a generated plan
and/or run a ‘what-if’ type analysis. A variant of the approach is presented by Zaidi and Wagenhals
(2005) that introduces a notion of ‘Stretch Slack’ for critical activities. The two approaches, in our
opinion, offer an effective toolkit for mission planners. The approach offers an enhanced formalism
for planning in terms of its expressive language for specifications, provision for point and interval
descriptions of temporal events, and a powerful inference engine.

References

Allen, J. F. 1983. Maintaining Knowledge About Temporal Intervals. Communications of ACM
26:832-843.

Allen, J. F. 1984. Towards a General Theory of Action and Time. Artificial Intelligence 23(2):123-
154.

Busacker, R. G. 1965. Finite Graphs and Networks: an introduction with application. New York.:
McGraw-Hill.

Ladkin, P. B., and Maddux, R. 1988. On binary constraint networks, Technical Report, KES.U.88.8,
Kestrel Institute, Palo Alto, Calif.

Moder, J., and Philips, C. 1970. Project Management with CPM and PERT, 2nd Edition. New
York.: Van Nostrand Reinhold.

Warshall, S. 1962. A theorem on boolean matrices. Journal of the ACM 9(1):11-12.

Zaidi, A. K. 1999. On Temporal Logic Programming Using Petri Nets. IEEE Transactions on
Systems, Man and Cybernetics, Part A, 29(3): 245-254.

Zaidi, A. K., and Levis, A. H. 2001. TEMPER: A Temporal Programmer for Time-sensitive Control
of Discrete-event Systems. IEEE Transaction on Systems, Man, and Cybernetic, 31(6):485-496.

Zaidi, A. K. 2002. A Temporal Programmer for Time-Sensitive Modeling of Discrete-Event
Systems. In Proceedings of IEEE - Systems, Man, and Cybernetics Society 2000 Meeting .
Nashville, TN.

Zaidi, A. K., and Wagenhals, L. W. 2005. Planning Temporal Events Using Point Interval Logic.
Special Issue of Mathematical and Computer Modeling. Forthcoming.

