
Cover Sheet

Flexible Data Entry for
Information Warning and Response Systems

Alice M. Mulvehill

BBN Technologies
10 Moulton Street

Cambridge, MA 02138
617-873-2228

Fax: 617-873-2794
amm@bbn.com

James Reilly

Air Force Research Lab (AFRL)
525 Brooks Road
Rome, NY 13441

315-330-3333
Fax: 315-330-2885

James.Reilly@rl.af.mil

Brian Krisler

BBN Technologies
10 Moulton Street

Cambridge, MA 02138
617-873-4899

Fax: 617-873-2794
bkrisler@bbn.com

Flexible Data Entry for
Information Warning and Response Systems

Alice M. Mulvehill

BBN Technologies
10 Moulton Street

Cambridge, MA 02138
617-873-2228

Fax: 617-873-2794
amm@bbn.com

James Reilly

Air Force Research Lab (AFRL)
525 Brooks Road
Rome, NY 13441

315-330-3333
Fax: 315-330-2885

James.Reilly@rl.af.mil

Brian Krisler

BBN Technologies
10 Moulton Street

Cambridge, MA 02138
617-873-4899

Fax: 617-873-2794
bkrisler@bbn.com

Abstract
The need to collect data that can provide warnings to avert
crisis situations is paramount to many modern military and
civil response systems. These systems allow the end user to
report a variety of anomalies about the world. The U.S. Air
Force’s Integrated Information Management System
(IIMS) has been developed to support the collection and in-
terpretation of data that may be indicative of potential
chemical or biological attacks. Data-entry forms are gener-
ally provided to end-users for description of incidents of in-
terest. Since all possible data types cannot be realized in the
design process, it would be useful to provide forms that can
adapt to the data being collected.
Tracker is a tool that allows a user to define and use one or
more XML-based templates (forms) to support problems
such as crisis-action mission planning. Tracker provides
users with a suite of tools that allow them to easily add or
modify fields in a given template or instance. Since this
feature is the type of capability that the IIMS developers
wanted for their system, an experiment was conducted link-
ing Tracker to IIMS. In this paper we present the results of
this experiment.

Introduction
The need to collect data that can provide warnings to avert
crisis situations is paramount to many modern military and
civil response systems. These systems allow the end user to
report a variety of anomalies about the world. The ideal
system, while it must impose a certain amount of consis-
tency of form to the data, must also somehow offer enough
flexibility to allow the user to describe events that were not
anticipated and therefore not designed into the data collec-
tion forms. In this paper we describe an experiment that
attempted to enhance the flexibility of the data-entry forms
in a crisis-support system called the Integrated Information
Management System (IIMS) [1].

Tracker is a tool that allows a user to define and use one
or more XML-based templates (forms) to support a variety
of problem-solving contexts, e.g., crisis-action mission
planning. In many applications, a template is equivalent to
a blank form that describes a set of fields and provides
specifications about the value of a given field. With
Tracker, templates can be developed to have an active
quality. This means that information elements (fields) de-
fined in a template can be linked to other information ele-
ments that appear in one-or-more related templates. When
these relationships are specified, the modification of a
given information element will result in active data propa-
gation or change in the related elements. In the systems
that have been developed with Tracker to date, we have
noticed that this active feature not only reduces the data
entry effort, it can also be used to manage data entry from
multiple users who are working together on a given prob-
lem in a distributed-computing environment.

Tracker also offers another feature that is useful in prob-
lem domains where unanticipated extensions to data-entry
mechanisms are the norm. Tracker offers the end user a
method for easily adding fields to any template instance (a
template that is being used to make a report) to handle un-
anticipated data entry or planning needs.

The experiment we describe in this paper focused on the
collection and integration of data specifically associated
with biological and chemical incidents as collected and
analyzed in IIMS.

IIMS is a suite of information technologies that support
the command and control (C2) required for effective Nu-
clear-Biological-Chemical (NBC) modeling, situation
awareness and analysis. The technology underlying IIMS
provides the means for fusing information from the many
passive, active, and human data sources that are associated
with the detection and tracking of chemical and biological
attacks, both overt and covert.

a
D
t
p
d
D
D
t
c
D
a
T
D
W
o
i
b
i
d
d

o
w
f
s
b
i

Figure 1: IIMS Digital Dashboard

In order to provide C2 decision makers with timely situ-
tional awareness, IIMS leverages the concept of a Digital
ashboard. In many decision support environments, Digi-

al Dashboards are often used to gather information about a
roblem and provide a set of visualization methods that
escribe the state of a problem domain at a given time [2].
igital Dashboards can be hand crafted, as is the IIMS
igital Dashboard, or they can be commercially obtained,

hen tailored to suit a particular problem. For example, a
ommercially available Digital Dashboard tool, Executive
ashboard by ServiceWare [3] provides Analysis, Alerts

nd Reporting tools in a single easy to use application.
his tool relies on the Microsoft Office XP Digital
ashboard [4] developer environment, which incorporates
eb-based elements (such as news, stock quotes, and so

n) called WebParts, allowing these parts to be integrated
nto a single Office like application. Office dashboards can
e customized in a multitude of ways and named accord-
ngly, for example as a general corporate or enterprise
ashboard, or more specifically, as a commander’s or CEO
ashboard.
The IIMS Digital Dashboard (see Figure 1) was devel-
ped to support decision makers specifically concerned
ith chemical and biological incidents. This Dashboard

eatures a java-based graphic-information system and a
uite of situational awareness tools that can be customized
y the operator to facilitate the flow of hazard and damage
nformation into a single integrated operational picture.

The Digital Dashboard also acts as a container application
and framework for the integration of one or more loosely
coupled and dynamically configurable software compo-
nents. These components, called cells, can be run as stand-
alone applications, as an applet in a Web page, or con-
tained within the Digital Dashboard.

In theory, the Tracker application is capable of support-
ing IIMS as either a stand-alone application, as a cell, or in
both modes. While Tracker can support the distributive
collaborative usage of templates during planning and exe-
cution, its strength and most attractive feature to the IIMS
developers was the ease that the Tracker system affords
users in the creation, usage and extension of tem-
plates/forms.

Background

IIMS Overview
The genesis of the IIMS Digital Dashboard began with the
Restoration of Operations (RestOps) Advanced Concept
Technology Demonstration (ACTD) [5]. This ACTD was
designed to help fixed military sites, such as air bases and
seaports, protect themselves against and recover from
chemical or biological attacks. The RestOps Information
Management (ROIM) tool replaced manual reporting proc-
esses with computer-based data entry and display capabili-

ties in order to enhance situational awareness of Command
and Battlestaff, and unit-control-center personnel.

IIMS continues to evolve these capabilities by providing
unparalleled versatility and interoperability. IIMS has been
showcased in the 2004 Joint Warfighter Interoperability
Demonstrations (JWID). During this JWID effort IIMS
was used to display data originating from players through-
out the United States and from worldwide coalition part-
ners. As IIMS matures and continues to integrate its capa-
bilities, it is envisioned to play a role as the C2 backbone
for various warning and response systems.

The developers of IIMS are interested in supporting inci-
dent response and battle management with tools that enable
operators to interact with the system to both describe the
incident and to respond appropriately to the incident. This
is currently supported in IIMS by the following:

• Digital Dashboard Command Post Software, which is a
data-fusion system providing a suite of applications de-
signed to consolidate, display, and manage day-to-day
data, Chemical-Biological contingency data, and related
hazard data from sensors, reconnaissance reports, and
hazard modeling.

• A detection network, which is established by using elec-
tronic signal control devices that provide a communica-
tion link and a computer interface to integrate dissimilar,
remotely located devices (e.g., detectors, sirens, warning
lights, GPS receivers, and meteorological sensors) into a
common network.

• Warning devices, consisting of both audio systems and
light systems that are used to disseminate alarm and en-
vironmental condition information.

Tracker is intended to extend the capabilities of the exist-
ing Digital Dashboard by allowing end users to easily ex-
tend description elements of the existing reporting tools
that constitute a component of the Digital Dashboard,
called the Electronic Activity Report Manager. Conven-
iently, the Digital Dashboard is also the component of
choice for the integration of new tools. The Discussion
section of this paper describes how Tracker was integrated
as both a cell and as a stand-alone application to support
IIMS.

Tracker Overview
The Tracker prototype is one of the many active-forms
tools that were developed as part of a research program
sponsored by DARPA called Active Templates [6]. The
Tracker software was developed to support template con-
struction, and then to allow planners at different levels of
the C2 structure to use the templates (make instances of
them) to support crisis action mission planning. Tracker
also provides an infrastructure to support the collaborative,
distributed development and execution of plans. For exam-
ple, Tracker has been successfully used to support a group
of military planners in the generation of mission-planning
folders that described the state, objectives, resource avail-
ability and other aspects of missions. During these experi-

ments, Tracker templates were used and modified to sup-
port mission requirements as the mission evolved [6].
Note, however, that for IIMS Tracker’s collaborative infra-
structure is not needed. IIMS needs only the flexible capa-
bilities that Tracker provides for template (and instance)
construction and modification.

A pallet of information element widgets is available in
Tracker for use in the construction of a template. With this
pallet of design widgets, the Tracker application has been
successfully used to prototype templates to provide a vari-
ety of planning and execution contexts [7, 8]. Experiments
with Tracker have demonstrated that the Tracker interface
can enable a user who is not skilled in the development of
a template/forms-based graphical user interface to rapidly
design such an interface. If the interface is to be part of
Tracker, then there is no further development, but if the
interface is to be used in another application, Tracker pro-
vides a set of tools to allow the export of the template de-
sign to the other application. Of course, methods in the
receiving application have to exist for that application to
make use of the Tracker exported template(s).

At the time of Tracker inception, few tools were avail-
able that could provide the types of template creation, us-
age, and modification capabilities that are currently offered
by Tracker. Other tools are starting to appear, though most
are based on XForms [9], a World Wide Web Consortium
(W3C) recommendation designed for forms on the web.
XForms-based templating tools are more of a transforma-
tion of a graphical form into XML, and do not provide any
of the widget libraries or other features that are now a part
of Tracker. However, XForms does separate data, logic,
and presentation, which frees the use and manipulation of
data from platform constraints, and allows data to be ac-
cessed by any type of data browser—telephone, web site,
etc. The XForms working group is moving toward making
this a standard within the W3C.

Many of the tools that use XForms [10] provide support
primarily for the browsing and viewing of existing forms,
with less emphasis on the dynamic creation of forms. For
example, the Oracle Application Server 10g Wireless Cli-
ent [11] uses XForms only to display information on a va-
riety of mobile devices for both online and offline form
processing.

Another template/form engine is Microsoft’s InfoPath.
[12] InfoPath is a Microsoft Office based tool that can be
used to generate dynamic, content-rich forms that can be
shared and reused effectively. This tool provides additional
capabilities beyond XForms, but without adhering to the
W3C recommendation. InfoPath provides a common, well
known, editing environment (the Microsoft Office envi-
ronment). It also allows the quick creation, modification
and completion of dynamic forms, making it a comparable
tool to Tracker.

However, unlike Tracker (which is lightweight, inexpen-
sive, and platform independent), InfoPath requires the pur-
chase of the Microsoft Office software, which must be
installed on a modern computer running the most current

M
B
f
c
e
i
D

O
t
R
c
s
A
b
m
g

h

EAR Header

Event Unique Information

EAR Footer

Figure 2: Example Electronic Activity Report (EAR)

icrosoft operating system and Microsoft Internet
rowser [13]. Another difference from Tracker is that In-

oPath forms cannot be viewed externally to the InfoPath
lient application. This prevents the use of InfoPath to gen-
rate or modify an existing form that would then be used
nside of another application such as the IIMS Digital
ashboard.

Premise and Goals
ne of the existing tools available through the IIMS Digi-

al Dashboard for data reporting is the Electronic Activity
eport Manager. This application is a workflow-
ollaboration tool that provides a user-friendly interface for
ubmitting, receiving, forwarding, and tracking Electronic
ctivity Reports (EARs). The fields of the reports have
een specifically designed to address general EAR infor-
ation as well as the specific information associated with a

iven category of incident response (see Figure 2).
IIMS Electronic Activity Reports are pre-defined and ad-
ere to a database schema that cannot be readily changed

by end users. With Tracker, IIMS developers could allow
end users to modify EAR templates to better to support
their immediate “in-the-field” data reporting needs.
Tracker would also allow end users who are disconnected
from the central platform a mechanism for accessing and
using IIMS templates. As templates were used and possi-
bly modified, the users would then upload their completed
template reporting data into the IIMS database. Any added
data elements would be filtered and provided directly to an
IIMS administrator for processing. The two direct advan-
tages to this approach are that Tracker would allow the end
users to enter the reporting data required by the EAR tem-
plates as well as any extra data that was of relevance to the
incident. In this way, Tracker would provide a method to
enable the IIMS system to “learn” about new data-element
requirements, and to use this learned knowledge to support
data-form modification.

Our experiment was driven by the following main goals:

• To convert Tracker to run as a cell within the IIMS Digi-
tal Dashboard software (DDS). Since IIMS was designed
to provide a single environment for data collection, hav-

ing Tracker run as a cell within the DDS would mini-
mize potential data integration problems for the end
user.

• To use Tracker to enable the DDS to convert new and
existing EARs into XML-based templates/instances.
Providing the DDS with the ability to convert forms and
templates into an XML data format would expand the
ability of IIMS applications to communicate with XML-
based applications, such as service based informational
and analysis systems.

• To store Tracker-developed templates and Instances into
the IIMS Oracle Database. The IIMS developers would
need to build a method to later support the analysis of
any added data-collection fields to determine whether
they should become part of the permanent IIMS database
schema.

Procedures and Results
We attempted to integrate the IIMS Digital Dashboard

software (DDS) with Tracker. Our intent was to add dy-
namic form generation capabilities to existing EAR forms
to allow end users the ability to adapt the forms to match
their data collection needs and not restrict the users to old,
sometimes outdated data collection forms. Our experiment
was sensitive to the fact the DDS is developed on a legacy
Oracle database with a well-defined schema that is used by
many vendors, and therefore the schema does not lend it-
self to frequent changes or updates. We needed to develop
a method for using current and future schema-based data
while also storing our new non-schema based template data
in the database (where it could later be analyzed and used)
thus allowing for a transparent integration between Tracker
and DDS.

Because the IIMS Digital Dashboard was designed to be
a large container of many different cells, the ideal imple-

Figure 3: Tracker Version of an EAR Report with Database Calls and Sub-Templates

mentation would be to have Tracker run as a cell within
the DDS. However Tracker was designed to run only as a
stand-alone application. When we attempted to make the
required modifications to allow Tracker to run as a cell we
discovered that this effort would require quite a large ex-
tension to Tracker. For example, all of the window listen-
ers attached to the menus and the forms widgets in Tracker
would require modification in order to operate correctly as
an IIMS cell. This would involve the separation of the dis-
play components into a Model View Controller (MVC)
pattern that would centrally locate the listeners. Although
the MVC pattern is a common design pattern in GUI soft-
ware development today, Tracker was developed under
another research paradigm and was not intended for ex-
treme portability. Because of the overhead required to run
Tracker as a Cell, we decided to instead integrate it as a
Standalone application.

Another goal of the integration experiment was to use
Tracker to display EAR reports. This goal could be satis-
fied with Tracker as a Cell or as a Standalone application.
Our initial approach was to use Tracker to read the IIMS
database records and automatically generate a set of tem-
plates from those records. Unfortunately EARs are com-
prised of multiple database records, and the automatic
method did not apply. Instead, we opted to create a handful
of templates to represent a set of EAR templates (see Fig-
ure 3). The generation of these EAR templates provided us
with recommendations to IIMS developers on future tem-
plate development and re-use. For example, although each
EAR addresses a given incident category, each EAR con-
tains a header that contains information types that are in-
variant across EARs. Therefore, the example EAR that is
displayed in Figure 3 is comprised of several sub-templates
(in that example the EAR header and the aircraft specific
template). Once the EAR header template is defined with
Tracker, it can then be re-used to develop other EAR tem-
plates. Additionally, we developed a custom database field
(also displayed is Figure 3) that draws value options di-
rectly from the IIMS database.

Another Tracker feature that was used to develop EARs
is the Tracker Domain functionality. Although Tracker
was developed to allow users to define one or more tem-
plates dynamically in support of many problem solving
contexts, our experience to date has indicated that certain
form widgets form widgets (e.g., text, graphics, date/time,
radio buttons, web calls) are often tailored to support a
given problem domain, hence the Tracker Domain concept.
When a Domain is loaded into Tracker, Custom widgets
become available to support that problem context. For
example, a form can be created in Tracker with a custom
widget that performs a database lookup and displays a se-
lection list based on the database values returned. Tracker
will store the SQL as a parameter within the widget. This
allows for complete freedom in form modification without
requisite knowledge of the Tracker sources. However, for
this widget to work correctly within another application,
the widget knowledge of how to perform database lookups
and building of a selection list must be transferable to the

new application. The Tracker Domain controls some of
this background work for the user. This detailed knowl-
edge is specific to the Tracker custom Domain and is not
stored within the generated XML templates.

To allow Tracker access to the legacy database we cre-
ated an Application Program Interface (API). The API was
also developed to provide access to a new set of IIMS da-
tabase tables that were developed to support the storage of
templates developed with Tracker. Because these new ta-
bles communicate only with the DDS, they can exist out-
side of the larger existing IIMS database and not require
changes to the legacy schema.

To store the Tracker templates into the database we ex-
perimented with separating the base template from any
user-entered modifications. We did this in order to (1)
build a table of templates that could be reused within IIMS,
possibly as a cell, independent of Tracker, and (2) to im-
plement a special table within the database that would be
used to store any added or modified fields. This table could
then be used by the DDS/IIMS administrator to track the
frequency of any fields that were added or modified by
users with the Tracker EAR forms. The theory was that the
frequent addition of a given field indicated a requirement
for a modification to the existing data entry form. It would
be the job of the IIMS administrator to determine if this
requirement should be implemented as a change to the
IIMS database schema and associated existing legacy
forms.

Due to limited time constraints, we decided to store the
XML templates as a single entity in the database. Due to
database schema requirements, we were required to store
the entire template as a BFILE. This storage prevented
template analysis via simple database queries, however we
didn’t intend to perform analysis on the original templates
so we did not view this as an immediate issue. Instead, we
assumed that future development would result in a tem-
plate storage method that would facilitate parsing and
analysis of templates using database calls.

When we attempted to store the template instances (tem-
plates with data and possible new or modified fields), we
ran into several problems. First we discovered that separat-
ing templates and instances was not as easy as we origi-
nally expected. When Tracker stores an instance, the in-
stance contains the complete template with the instance
data plus any new and modified fields. We wanted to ex-
tract this information so that we could store the instance
data in it’s own table. We found that this would required
the modification of Tracker. We needed to have a tag that
indicated what template field the data applied. Without this
tag, we were not able to re-assemble the template outside
of Tracker with completed instance data.

While we did develop a method to tag both templates and
template instances, our integration effort did not mature to
the point where we could write this data directly to the
IIMS database. More work would be required to meet this
goal.

We also discovered that while separating template struc-
ture from the template data was the correct approach from

a database point of view, this design did not provide the
required flexibility required to meet our experiment de-
mands for data form flexibility. For example, we found
that having the template structure in one table and the tem-
plate data in another table did not easily accommodate new
or modified fields. Future work would be required to de-
velop a better, more flexible database design that allowed
for the addition and modification of template fields, data
and metadata, while also allowing for the easy re-
construction of template forms in applications outside of
Tracker.

Finally, because existing Tracker widgets are tightly in-
tegrated into the templates and Tracker itself, we were not
able to share them with IIMS (as a cell) as easily as we
expected. Future work would require the development of
an API that could allow easier exporting of the Tracker
widgets to the IIMS library.

Conclusion and Future Work
During our research we discovered that the concept of add-
ing a dynamic templating capability to the IIMS Digital
Dashboard would indeed provide a flexible interface for
incident response operators to quickly adapt their forms
and templates to changing data gathering requirements at a
moments notice. Although we were not able to get the API
between the two tools working sufficiently to test our hy-
pothesis that IIMS would benefit from dynamic templating,
we were able to demonstrate the concept through our work
with the development of Tracker EAR templates. In addi-
tion, our work identified the need for additional modifica-
tions to both Tracker and IIMS.

By providing Tracker/IIMS with specific tables in the
legacy database we discovered that we can collect the re-
quired information that would allow the creation of analy-
sis tools that could discover frequently added data fields,
thus providing an element of learning that could help to
shape future data collection forms.

Our experiment with the integration of Tracker with
IIMS indicated the benefits of both modifying Tracker
templates to match a common format such as XForms, and
providing for the separation of the widget library from the
core of Tracker. First, by following a defined data stan-
dard such as XForms, Tracker templates could be inte-
grated more easily into other software projects without
affecting its adaptive, unstructured abilities. In some in-
stances, integration might only require the existing tem-
plates and widget libraries to have full functionality.

Second, the separation of widgets from the core of
Tracker would also improve the portability of Tracker to-
wards non-desktop based implementations such as PDA or
mobile telephone. Since mobile devices do not usually
contain the full suite of graphical components, a specific
library could be created to mimic the missing components
on a device such as a PDA.

To allow the proper sharing of widgets, a widget library
with a common API needs to be defined. This API would
allow the development of multiple platform specific librar-

ies without the need to modify the core of Tracker. For
example, if we used a design approach such as the depend-
ency of interjection approach [14], we could have incorpo-
rated widget functionality in lightweight components. With
this approach, swapping platform widgets libraries could
be as simple as changing a parameter within a configura-
tion file.

Our research indicates that the provision of unstructured,
flexible data entry systems like Tracker can offer the end
user the ability to modify and update templates that have
schema-specific structure. Further efforts would require
better APIs that support the integration of the new data
elements with existing database schemas. Perhaps some of
the research with evolving ontologies could help to support
this type of capability.

References
[1] Air Force Research Laboratory News Release, “In-

formation Directorate Participates in JWID 2004,”
July 23, 2004, AFRL-R 04-86,
http://www.rl.af.mil/div/IFO/IFOI/IFOIPA/press_histo
ry/pr-04/pr-04-86.html.

[2] Dursteler, J. C., “Digital Dashboard,” InfoVis.net,
April 12, 2004,
http://www.infovis.net/printMag.php?num=143&lang
=2.

[3] ServiceWare Executive Dashboard,
http://www.infoimage.com/solutions/executivedashbo
ard.asp.

[4] Microsoft Digital Dashboard,
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-
us/modcore/html/decondigitaldashboardoverview.asp.

[5] Garamone, J., “Advanced Technologies Program is on
the Battlefield,” American Forces Press Service, 2003;
http://www.dau.mil/pubs/pm/pmpdf03/March/afps-
0503.pdf.

[6] Mulvehill, A., “Authoring Templates With Tracker,”
IEEE Transactions on Intelligent Systems, 2005.

[7] Mulvehill, A., Callaghan, M., Hyde, C., “Using Tem-
plates to Support Crisis Action Mission Planning,”
2002 Command and Control Research Technology
Symposium, June 2002.

[8] Mulvehill, A., Benyo, B., Rager, D., DePalma, E.,
“ACT – The Automated Clearance Tool: Improving
the Diplomatic Clearance Process for AMC,” 2004
Command and Control Research Technology Sympo-
sium, June 2004.

[9] XForms - The Next Generation of Web Forms:
http://www.w3.org/MarkUp/Forms/.

[10] XForms Implementations;
http://www.w3.org/MarkUp/Forms/#implementations.

[11] Oracle Corporation, Oracle 10g Wireless Application
Server Data Sheet. Retrieved December 2004 from
http://www.oracle.com/technology/tech/wireless/mobi
lebrowser/OracleAS_Wireless_Client_DS.pdf.

http://www.rl.af.mil/div/IFO/IFOI/IFOIPA/press_history/pr-04/pr-04-86.html
http://www.rl.af.mil/div/IFO/IFOI/IFOIPA/press_history/pr-04/pr-04-86.html
http://www.infovis.net/printMag.php?num=143&lang=2
http://www.infovis.net/printMag.php?num=143&lang=2
http://www.infoimage.com/solutions/executivedashboard.asp
http://www.infoimage.com/solutions/executivedashboard.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/modcore/html/decondigitaldashboardoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/modcore/html/decondigitaldashboardoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/modcore/html/decondigitaldashboardoverview.asp
http://www.dau.mil/pubs/pm/pmpdf03/March/afps-0503.pdf
http://www.dau.mil/pubs/pm/pmpdf03/March/afps-0503.pdf
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/#implementations
http://www.oracle.com/technology/tech/wireless/mobilebrowser/OracleAS_Wireless_Client_DS.pdf
http://www.oracle.com/technology/tech/wireless/mobilebrowser/OracleAS_Wireless_Client_DS.pdf

[12] Microsoft InfoPath Website. Retrieved December
2004 from http://office.microsoft.com/en-
us/FX010857921033.aspx.

[13] Dubinko, Micha, (2003), XForms and Microsoft In-
foPath; Retrieved December 2004 from
http://www.xml.com/pub/a/2003/10/29/infopath.html.

[14] Fowler, Martin. (2004), Inversion of Control Contain-
ers and the Dependency Interjection Pattern. Re-
trieved December 2004 from
http://martinfowler.com/articles/injection.html.

http://office.microsoft.com/en-us/FX010857921033.aspx
http://office.microsoft.com/en-us/FX010857921033.aspx
http://www.xml.com/pub/a/2003/10/29/infopath.html
http://martinfowler.com/articles/injection.html

	Abstract
	Introduction
	Background
	IIMS Overview
	Tracker Overview

	Premise and Goals
	Procedures and Results
	Conclusion and Future Work
	References

