
 

 
 
 
 

10TH INTERNATIONAL COMMAND AND CONTROL RESEARCH AND 
TECHNOLOGY SYMPOSIUM 

 
 
 

THE FUTURE OF C2 
 
 
 
 
 

Title: 
Identification of Data Sets for a Robustness Analysis 

 
 
 
 

POC :Micheline Bélanger 
Decision Support Systems Section 

Defence Research and Development Canada – Valcartier 
2459 Pie-XI Blvd North, Val-Bélair, Québec, Canada, G3J 1X5 

Tel. (418) 844-4000 ext. 4734 
Email : micheline.belanger@drdc-rddc.gc.ca 

 
Jean-Marc Martel 

Faculté des sciences de l’Administration, Université Laval 
Québec, Québec, Canada, G1K 7P4 

Email: jean-marc.martel@fsa.ulaval.ca 
Tel. (418) 656-2131 ext. 7451 

 
Adel Guitouni 

Decision Support Systems Section 
Defence Research and Development Canada – Valcartier 

2459 Pie-XI Blvd North, Val-Bélair, Québec, Canada, G3J 1X5 
Tel. (418) 844-4000 ext. 4302 

Email : adel.guitouni@drdc-rddc.gc.ca 
 



 

Identification of Data Sets for a Robustness Analysis 
 

Micheline Bélanger1, Jean-Marc Martel2, Adel Guitouni1 
 

1Defence Research and Development Canada – Valcartier 
2459 Pie-XI Blvd North, Val-Bélair, Québec, Canada, G3J 1X5 

 
2Faculté des sciences de l’Administration, Université Laval 

Québec, Québec, Canada, G1K 7P4 
 
 

Abstract 
 
In military context, the process of planning operations involves the assessment of the 
situation, the generation of courses of actions, and their evaluation according to 
significant point-of-views, in order to select the course of actions that represents the best 
possible compromise.  Since several conflicting and quite incommensurable criteria need 
to be considered and balanced to make wise decisions, multicriterion decision Aid 
(MCDA) has been used to develop decision support systems.  Given that it is impossible 
to derive exact models of the situation, it is required that the decision analysis procedure 
helps identifying “good” results despite the imperfection of the models. In particular, a 
robustness analysis procedure should consider all plausible values according to the model 
of the decision-maker’s preferences in order to produce a ranking of best compromise.  
Defence Research and Development Canada – Valcartier (DRDC Valcartier) has 
developed and implemented a robustness analysis, appropriate for a multicriterion 
decision-support system in a context of military decision-making.  The procedure 
proposed for the determination of a robust result contains four (4) steps.  This paper 
presents the first step of this procedure: the establishment of data sets covering the 
domain of the possibilities concerning the modelling of the decision-maker’s preferences. 
 
 
1 Introduction 
 
Since 1991, Defence Research and Development Canada – Valcartier (DRDC Valcartier) 
has been investigating different approaches to support the decision-making processes that 
address military command and control problems.  One of these investigations was the 
study of a decision-aid system for the command and control of military resources within 
the context of Canadian airspace protection.  In such a context, several conflicting and 
quite incommensurable criteria need to be considered and balanced to make wise 
decisions.  As our understanding of military command and control processes improved 
with time, it appeared that most of the military operational planning processes were also 
considering several conflicting and incommensurable criteria while making a decision.  
Accordingly, multicriterion decision-aid process was deemed to be appropriate, in order 
to deal with most of military operational planning activities. 
 



 

A multicriterion decision-aid process is composed of several steps.  The first one is a 
structuration step.  It aims at identifying and formalizing the basic elements of a decision-
making situation under the shape of the model (Alternatives, Attributes/Criteria, 
Evaluations), also represented by (A, Λ/C, E).  The data supplied by the model (A, Λ/C, E) 
are completed with the introduction of some elements of the decision-maker’s preference 
modelling (M).  Accordingly to the multicriterion method in use, those elements are 
composed of coefficients of relative importance (c.r.i.) for the attributes/criteria, and/or of 
parameters such as thresholds (of indifference, preference, or veto).  The establishment of 
these values for each attribute/criterion permit to obtain the “local preferences”.  
Afterward, these local preferences are aggregated and exploited according to the 
decisional problematic retained (a choice of a best alternative, a sorting of the alternatives 
into different categories, or a ranking of the alternatives), to obtain one or several 
recommendations at the end of the process. 
 
Due to the complexity of the military operation context, it is very difficult for the military 
decision-makers to determine very precise values for these different coefficients and 
parameters while modelling preferences.  The likelihood of having more than one 
plausible data set for these parameters leads to the possibility to get more that one result 
of better compromise for a single decision-making situation.  Accordingly, it became a 
requirement for the military decision-makers to have a decision support system that 
provides valid results, despite the difficulty to develop an exact model of the situation.  
Such results, qualified as “robust”, would be less influenced by the imperfection of the 
data occurring in the evaluations of the courses of actions as well as in the instantiation of 
parameters representing decision-maker’s preferences during the modeling process of a 
military situation.   
 
The development of a robustness analysis, appropriate for a multicriterion decision-
support system in a context of military decision-making, was then conducted [1].  From 
this perspective, a result is considered as “robust” if it is not too far away from or not too 
contradictory [2] with, different results obtained for all the data sets representing 
plausible values for the decision-making model.  This robustness concept for the military 
needs was inspired by the robustness definitions of Kouvelis and Yu [3]: 

• The solution of a mathematical program is robust, from the point of view of the 
optimality, if it remains nearby the optimum whatever is the plausible set of 
data of the model (however, in this report it is not a question of optimality, but 
of better compromise). 

• A specific set of data instantiates a potential realization of the model of 
decision represented by a set of parameters.  Since the approach of robustness 
is crucially based on the process of generation of these data sets, it requires a 
good knowledge of the environment in which the decision is made. 

 
Three critical elements were identified to compute a robust ranking [1]: 

• an approach to model all the data sets that instantiate the decision-maker’s 
preferences, which are “not so well known”; 



 

• a method to aggregate the pre-orders generated from each data set; 

• a robustness criterion suited for the decision-making situation. 

 
This work focuses on the first element: identifying an approach to model all the data sets 
that instantiate the decision-maker’s preferences, which are “not so well known”.  This 
paper starts with a presentation of the decision-maker’s preferences modelling, and 
describes the associated coefficients and parameters: coefficients of relative importance 
(c.r.i.) of the criteria, thresholds of veto, thresholds of indifference and thresholds of 
preferences (section 2).  Then, for each one of them, an approach is proposed to identify 
the different values of these c.r.i. (section 3) and parameters (section 4) that should be 
considered to model decision-maker’s preferences.  Finally, in the section 5, an approach 
to establish the data sets from these values is presented. 
 
 
2 Decision-maker’s preferences modelling 
 
Modelling the decision-maker’s preferences is not an easy task because it is difficult to 
apprehend the subjectivity and the imprecision/ambiguity of human behaviour.  The 
major challenge facing the implementation of any decision aid is the “accurate” 
assessment of these preferences.  Siskos [4] declared that “... the major problem for the 
analyst facing multicriterion phenomena raise, is the assessment of a model reflecting at 
best the preferences of the decision-maker.” 
 
Many ways and theories exists to articulate and model preferences.  For example, utility 
functions, valued functions, pairwise comparisons, tradeoffs and discrimination 
thresholds could be used (see [5,6,7,8,9,10,11] for more details).  In this section, we limit 
our review to the discrimination thresholds for preferences modelling. 
 
Roy and Bouyssou [9] maintains that when comparing two actions (such as COA ai and 
COA ak ) taking into account many criteria, a decision-maker may be in one of the 
following situations:  

i) he/she is indifferent between ai and ak (denoted ai~ak),  
ii) he/she strictly prefers ai to ak (denoted aifak),  
iii) he/she weakly prefers ai to ak (hesitation between indifference and strict 

preference: denoted aif
fak), or  

iv) he/she considers that ai is incomparable to ak (hesitation between aifak 
and akfai, or the two COAs are a priori matchless: denoted ai?ak). 

 
It is evident that when considering a single criterion at a time, there is no room for 
incomparability.  In classical decision analysis, any criterion is presumed to have an 
absolute discrimination power.  This implies that when comparing two alternatives ai and 
ak according to an absolute criterion (called also “true-criterion”), we get the following 
preference relations (Figure 1): 
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FIGURE 1 - True-criterion  

In this case, the indifference is reduced to a single point where the two evaluations are 
equal, and otherwise we have strict preference situations.  The single point indifference is 
called a strict indifference.  However, the evaluation of a COA with regard to a criterion 
is often uncertain and imprecise.  Moreover, on top of these uncertainties and 
imprecision, the decision-maker's preferences may involve some hesitations, doubts, 
indecision, etc.  In order to take these behaviours into account, one can introduce an 
indifference threshold qj≥0, such that if the performances of two alternatives on a 
criterion j (called quasi-criterion) differ by less than qj, then there is an indifference 
relation ~j such as (Figure 2): 
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FIGURE 2 - Quasi-criterion 

In this case, the hesitation range is expanded from a single point to an interval (which can 
be variable).  If qj is set to 0, then the quasi-criterion collapses to a true criterion. 
Moreover, one may define a strict preference threshold for a quasi-criterion j, pj≥0, such 
that if the performances of ai and ak according to this criterion differ by at least pj, then it 
is a situation where one alternative is strongly preferred fj to the other one.  However, if 
this difference is between qj and pj, we can conclude to a weak preference ff

j between the 
two COAs.  A criterion with preference and indifference thresholds is a pseudo-criterion, 
which is illustrated as follows (Figure 3): 
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FIGURE 3 - Pseudo-criterion 

If qj is set to 0, then the pseudo-criterion collapses to a pre-criterion, and if pj=qj, then the 
pseudo-criterion collapses to a quasi-criterion.  The use of constant thresholds for 
establishing preference relations is illustrated on Figure 3.  However, one should note that 
these thresholds are not necessarily constant; i.e. qj =qj(eij) and pj =pj(eij). 
 
An implementation of these MCDA concepts into an automated decision support system 
was realized and called CASAP (for “Commander’s Advisory System for Airspace 
Protection”).  The method selected for CASAP is called PAMSSEM [12,13,14] (for 
“Procédure d’Agrégation Multicritère de type Surclassement de Synthèse pour 
Évaluations Mixtes”) and is based on the model (A, Λ/C, E) [14].  In a military context, 
there is A , a set of the COAs, A = {a1, a2,..., ai, ..., am}, and Λ/C a coherent family of 
criteria, Λ/C ={C1, C2,..., Cj, ..., Cn}.  The value of the ith COA evaluation according to 
the jth criterion is denoted eij.  The evaluation of all the COAs according to the set of 
criteria produces the multiple criteria performance table E (see table I). 
 

TABLE I 

Multiple Criteria Performance Table E 

  Criteria (1…n) 
  C1 ... Cj ... Cn 

a1 e11 ... e1j ... e1n 
: : : : : : 
ai ei1 ... eij ... ein 
: : : : : : C

oA
s (

1…
m

)

 am em1 ... emj ... emn 
 



 

PAMSSEM requires a coefficient of relative importance (πj) associated to each criterion, 
as well as the value of certain parameters such as discrimination thresholds (qj 
representing the indifference one; pj representing the preference one) and as veto 
thresholds (vj,) to establish the local preferences: 

• πj represents the “voting power” the decision-maker is willing to assign to each 
criterion; 

• qj represents the highest difference between the evaluations of two alternatives 
according to a criterion j for which the decision-maker is incapable to make a 
clear choice between these two alternatives, given that everything is the same 
otherwise; 

• pj represents the smallest difference between the evaluations of two 
alternatives according to the criterion j for which the decision-maker is able to 
make a clear choice of one, given that everything is the same otherwise; 

• νj represents the smallest difference between the evaluations of two 
alternatives according to the criterion j for which the decision-maker cannot 
conclude that an alternative ai is as good as ak, if the performance of ak is 
higher than the performance of ai and if the difference of the evaluations 
between them is greater than νj (even if the performance of ai is higher than ak 
for all others criteria).  

 
To resume, the characteristics of our military decision-making situation context are: 

• A=(a1,…,ai,…,am); 

• Λ/C=(g1,…,gj,…,gn); 

• E=(eij =gj(ai), i=1,...,m; j=1,....,n); 

• M=(πj, vj(eij),qj(eij),pj(eij), i=1,...,m; j=1,...,n); and 

• a multicriterion method, PAMSSEM, within the framework of the ranking 
problematic. 

given m alternatives and n attributes/criteria. 
 
The determination of these coefficients and parameters’ values are very specific to a 
decision-making situation, as well as the decision-maker’s value system, belief and 
preferences.  At this stage, it is requested that an analyst helps the decision-maker to 
determine, as much as possible, a coherent set of parameters/values that reflects the 
“real” decision-maker’s preferences.  This has to be done considering that the 
information is imperfect due to inaccuracies, or to the incompleteness nature of some 
information. 
 
Due to the complexity of the military operation context, it is very difficult for the military 
decision-makers to determine very precise values for these different coefficients and 
parameters while modelling preferences.  Then, instead of determining precise values, 



 

data sets considered as good enough to instantiate the decision-maker’s preferences have 
to be identified.   
 
In PAMSSEM, as it is the case in the methods of ELECTRE type, thresholds are used for 
the modelling of the imperfection of information related to the action evaluations and the 
decision-maker’s preferences [15].  Since in PAMSSEM, mixed evaluations (noted E) 
can be admitted, the current imperfections (stochastic, fuzzy nature, missing data) related 
to E are thus modelled and taken into account for the determination of the multicriterion 
compromise.  So, we agree that the data sets, for the determination of a robust result, 
could consist of values for coefficients of relative importance of the criteria (πj), 
thresholds of veto (vj(eij)), thresholds of indifference (qj(eij)) and thresholds of 
preferences (pj(eij)).  This reduces the variety and the quantity of sets of plausible values; 
but still this quantity can be very large. 
 
The next section presents an approach to identify the different values of these coefficients 
and parameters that should be considered in the data sets that intends to model decision-
maker’s preferences.  The data sets are determined by the available information.  If the 
decision-maker, in interaction with the analyst, is able to supply a lot of information, all 
this information has to be used to determine the data sets.  It is essential that all these sets 
cover the domain of the possibilities concerning the modelling of the decision-maker’s 
preferences.  When possible, this work considers the use of intervals to express the 
imprecision related to the values used to model the decision-maker’s preferences, while 
doing a robustness analysis.   
 
 
3 Coefficients of relative importance of the criteria 
 
The coefficients of relative importance of the criteria )( jg  have values between 0 and 1 
and their sum is equal to 1: 

njj ,...,1,10 =<< π  with 1
1

=∑
=

n

j
jπ . 

 
If the decision-maker can determine precise values for the importance of each criterion, 
these values can be used as reference to establish other data sets.  If he can go as far as 
expressing intervals of plausible values [π1

(j) ,π2
(j)], we could then divide these intervals 

into small steps as wished to make a detailed analysis.  In order to limit the amount of 
combinations that may be involved in the treatment of robustness analysis, it is suggested 
that only three (3) values would be used for each interval (extreme values and central 
one): 

( )
( ) ( )

( ) 1,...,2,
2

, 2
21

1 −=∀
+

njj
jj

j π
ππ

π
 

where each set of coefficients values has to be normalised. 
 
 
 
 



 

3.1 Intervals based on decision-maker’s explicit values 
 
If the decision-maker provides explicit values for the c.r.i. of the criteria such as : 

( ) ( ) ( )nj ggg ,...,,...,1  
where ( )1g  is the most important criterion and ( )ng  the least important criterion; 

it is proposed to construct an interval focused on each explicit value of the coefficients.  
The interval for the coefficients of each criterion would be between 0 and 1 and defined 
as: 

[ ] [ ] [ ]2
)(

1
)(

2
)(

1
)(

2
)1(

1
)1( ,,,,,,, nnjj ππππππ KK  

1,...,2and,1,0with 1
)1(

2
)(

2
)1(

1
)(

2
)1(

1
)( −=∀≤≥〈〉 −+ njjjjjn ππππππ  

 
The limits of these intervals for the c.r.i. could be, for example in Table 1, from 10% to 
20% bigger or lesser from the given value; in respecting the constraints at the limits, 

( ) ( )
2

1
1

+≥ jj ππ  .   
 

Table 1. Intervals for the coefficients of relative importance of the criteria 

jg  
0
jπ  %100 ±jπ  %200 ±jπ  

)1(g  0.30 [0.27,0.33] [0.24,0.36]* 

)2(g  0.24 [0.216,0.264] [0.192,0.288]* 

)3()3( , gg ** 
0.18,0.18 [0.162,0.198], 

[0.162,0.198] 
[0.144,0.216], 
[0.144,0.216]* 

)4(g  0.10 [0.09,0.11] [0.08,0.12] 
 

* indicates particular cases where the constraint ( ) ( )
2

1
1

+≥ jj ππ is not respected 

** )3()3( , gg  represents two different criteria having the same value )3(g  

 
 
Considering that three (3) values are used for each interval (extreme values and central 
one), and that each set of coefficients has to be normalised leads to the identification of 

23 −n  sets of coefficients (-2 since the combination of extreme values ( )
1

jπ  and 

( ) njj ,...,1,2 =π  are normalised; that leads to the same set of parameters as the normalised 

central values ( )
( ) ( )

2

21
jj

j

ππ
π

+
= ). 

 
In the particular cases where the constraints are not respected (such as the ones with an * 
in the Table 1), we could use the center between the limits: i.e. if ( ) ( )

2
1

1
+≥ jj ππ  then, by 



 

considering ( ) ( )
( ) ( )

2

2
1

1
2

1
1 +

+

+
== jj

jj

ππ
ππ  we get ( ) ( )

0
1

1
+≤ jj ππ  and ( ) ( )

0
1

2
+≥ jj ππ .  For our example, 

since ( ) ( ) 288.024.0 2
2

1
1 =<= ππ , we can use ( ) ( ) 264.0

2
288.024.02

2
1
1 =

+
== ππ   (<0.30 and >0.24). 

 
In this case, the combination of normalised extreme values does not lead to the same set 
of parameters as the combination of normalised central values, and we will get n3  sets of 
parameters. 
 

3.2 Intervals based on decision-maker’s intervals 
 
If the decision-maker is able to provide an interval for the coefficients of each criteria, 
such as:  

[ ] [ ] [ ]2
)(

1
)(

2
)(

1
)(

2
)1(

1
)1( ,,,,,,, nnjj ππππππ KK  1and0with 2

)1(
1

)( 〈〉 ππ n   
and if the relative importance of the criterion )1(g  is greater than the relative importance 
of criteria )2(g  and so on, where [ ]2

)1(
1

)1()1( ,ππ→g , [ ]2
)(

1
)()( , jjjg ππ→  and [ ]2

)(
1

)()( , nnng ππ→ , we 
would use these intervals directly. 
 
If there are no ex æquo criteria (i.e. there is no criterion that have the same importance as 
another one), it is possible to identify a limited number of values for each interval.  
Considering that three (3) values are used for each interval (extreme values and central 
one), and that each set of coefficients has to be normalised, this leads to the identification 
of 23 −n  sets of coefficients (for the same reasons as mentioned in 3.1). 
 
It is possible to have two (or more) criteria ex æquo (i.e. if two criteria have the same 
importance), and this may appear in more than one place in the pre-order.  These ex æquo 
criteria have to be processed as one (i.e. one block).  For example, if there are only two 
criteria that have the same relative importance, we will have, in order : 

( ) ( ) ( )( ) ( )1
,,,

1 1,...,,,...,
−=nnjj gggg . 

 
The same process is done when there are two criteria ex æquo or if there are other groups 
of ex æquo criteria.  For example, with eight (8) criteria respecting the following pre-
order: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )54443221 ,,,,),,(, gggggggg 






  

where ( )1g  is the most important criterion and ( )5g  the least important criterion. 
 
We have: 
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Each one of the three criteria at the fourth rank has the same interval of values for its 
coefficient of relative importance; then we can retain the hypothesis that the value of the 
importance of the coefficient for the criteria that are ex æquo is the same.  This 
hypothesis leads us to keep 23

'
−n  (in our example: 235 −  ) sets of coefficients, if we use 

three values by interval. 
 

3.3 Intervals based on a pre-order of importance 
 
It is possible that the decision-maker is only able to provide a pre-order on these 
coefficients 

π(1) ≥ π(2) ≥ …. ≥ π(n)  with πj > 0 and ∑
=

=
n

j
j

1

1π , 

and eventually the presence of equals (“ex æquo”).  For example, in this case, we can 
retain six value (data) sets π1, π2, ..., π6 where π1 corresponds to the case where the 
criteria are equally balanced and  π6 corresponds to the case where the c.r.i. are 
decreasing from 1 to 1/n (before the normalisation of the coefficients of relative 
importance of this vector).  For the four data sets between π1 and π6, we progressively 
reduce the values of the c.r.i. by slices, on a basis of (n-2)/4, in respecting the pre-order.  
If (n-2)/4 is not an integer, then the fractional part has to be considered.  For example, if 
we have 15 criteria to consider, then (n-2)/4 = 3.25 and the four (4) less important criteria 
are going to be modified, i.e. π2 : (n-1/n, n-2/n, n-3/n, n-4/n) and progressively by slices 
of three criteria for the three other data sets π3, π4, π5.  These data sets are illustrated in 
the Table 2. 
 
 



 

Table 2. Six data sets 

 

1π  2π  3π  4π  5π  6π  
1 1 1 1 1 1 

1 1 1 1 1 
n

n 1−  

1 1 1 1 
n

n 1−  
n

n 2−  

1 1 1 1 
n

n 2−  
n

n 3−  

1 1 1 1 
n

n 3−  
n

n 4−  

1 1 1 
n

n 1−  
n

n 4−  
n

n 5−  

1 1 1 
n

n 2−  
n

n 5−  
n

n 6−  

1 1 1 
n

n 3−  
n

n 6−  
n

n 7−  

1 1 
n

n 1−  
n

n 4−  
n

n 7−  
n

n 8−  

1 1 
n

n 2−  
n

n 5−  
n

n 8−  
n

n 9−  

1 1 
n

n 3−  
n

n 6−  
n

n 9−  
n

n 10−  

1 
n

n 1−  
n

n 4−  
n

n 7−  
n

n 10−  
n

n 11−  

1 
n

n 2−  
n

n 5−  
n

n 8−  
n

n 11−  
n

n 12−  

1 
n

n 3−  
n

n 6−  
n

n 9−  
n

n 12−  
n

n 13−  

1 
n

n 4−  
n

n 7−  
n

n 10−  
n

n 13−  
n
1  

 

 

4 Threshold values  
 
Our work considers the use of intervals to express the imprecision related to the values 
that are used for modelling the decision-maker preferences, while doing a robustness 
analysis.  The three types of thresholds that are part of the decision-maker preferences’ 
model in PAMSSEM are: indifference threshold, preference threshold and veto threshold.  
Our work is looking at criteria that have cardinal evaluations.   
 

4.1 Indifference threshold 
 
We need to get an interval for the indifference threshold such as :   

[ ] 0with,, 121 ≥∀ jjj qjqq .   
The intervals of the indifference threshold ( jq ) can vary between 0 and jE , which 
corresponds to the range of the scale associated to the criteria jg .  
 
If the decision-maker provides an interval for this indifference threshold, then we are 
going to use it directly. 



 

 
If the decision-maker provides an exact value for this threshold, we propose to define the 
interval by using two other values: 80% and 60% of '

jq , for example 12 8.0 jj qq =  and 
13 6.0 jj qq =  are two inferior values since the reference value is probably over estimated.  

These values (80% and 60%) have been obtained from simulations, and therefore, they 
are not absolute values.   
 
If the decision-maker is not able to provide anything for this indifference threshold, we 
[14] suggest to calculate a default value by using : 

jj EXq 25.015.0' =     
and then, one can define an interval by using 80% and 60% of these '

jq . 
 

4.2 Preference threshold 
 
One needs to get an interval for the preference threshold such as :   

[ ] jpp jj ∀21 ,  with jjjj Epqp ≤≥ 221 and . 
The intervals of the preference threshold ( jp ) can vary between jq  and jE which 
corresponds to the range of the scale that is associated to the criteria jg .   
 
If the decision-maker provides an interval for this threshold, then we are going to use it 
directly. 
 
If the decision-maker provides an exact value for this preference threshold, we propose to 
define the interval by using two other values: 80% and 60% of '

jp ; for example 12 8.0 jj pp =  
and 13 6.0 jj pp =  are two inferior values since the reference value is probably over estimated 
with the constraint: jqp jj ∀≥ 21 .  These values (80% and 60%) have been obtained from 
simulations, and therefore, they are not absolute values.   
 
If the decision-maker is not able to provide anything for this preference threshold, we 
[14] suggest to calculate a default value by using : 

( )jjjj qvEp −+= 05.025.0' ,  
where jv  is the veto threshold described in subsection 4.3 

and then to define an interval by using 80% and 60% of '
jp . 

 
4.3 Veto threshold 

 
If the decision-maker provides an interval for the veto threshold, such as 

[ ]21 , jjj vvv ⇒  
then we are going to use it directly. 
 
If the decision-maker provides an exact value for this threshold, we propose to determine 
the interval: 



 

[ ] 2121 with, jjjjj pvvvv >⇒  
by using two other values: 80% and 60% of '

jv .  For example, 12 8.0 jj vv =  and 13 6.0 jj vv = are 
two inferior values since the reference value is probably over estimated with the 
constraint : 

jpv jj ∀≥  
 
These values (80% and 60%) have been obtained from simulations, and therefore, they 
are not absolute values.   
 
If the decision-maker is not able to provide any exact value for this threshold, we [14] 
suggest to calculate a default value such as:  

j

j
j

E
v

π

25.0
=   where Ej is the range of the scale associated with the criterion gj and 

πj his c.r.i.. 
However, we have to make sure that jpv jj ∀> 2 . 
 
Since this value varies in function of the coefficients of relative importance of the 
criteria, no interval will be defined. 
 
 
5 Identification of plausible data sets 
 
Considering all plausible parameter values will determine the number of data sets to 
handle in the robustness analysis.  As mentioned previously, this work considers the use 
of intervals to express the imprecision related to the values that are used for modelling 
the decision-maker’s preferences while doing a robustness analysis.  Accordingly, the 
number of data sets to be handled in a robustness analysis can be rather big.  Even by 
limiting the number of values to three (3) by each interval, the number of data sets can be 
quite impressive.  Even if this is nothing unexpected (for example, Roy and Bouyssou 
[16] bring in 136 data sets in their analysis of robustness), we need to define a way to 
handle these combinations in an acceptable time frame.  The approach we propose is to 
treat the different parameters as groups or blocks.   
 
For this example, we will consider both the indifference and preference thresholds only.  
If there is m cardinal criteria, we can form m9 sets of thresholds.  We can reduce this 
number to 9 by grouping (block) the extreme and central values of all the criteria.  For 
example, see Table 3: 
 



 

Table 3. Treatment of parameters in blocks 

 

 jq  jp  

 1
jq  jq  

2
jq  

1
jp  jp  

2
jp  

1g  
1
1q  1q  

2
1q  

1
1p  1p  

2
1p  

… … … … … … … 

jg  
1
jq  jq  

2
jq  

1
jp  jp  

2
jp  

… … … … … … … 

mg  
1
mq  mq  

2
mq  

1
mp  mp  

2
mp  

 

 
By computing the values in blocks, we will get 9 combinations instead of having 39  ones.  
Therefore, we suggest that such an approach should be used to reduce the number of 
combinations in order to obtain an acceptable time frame for execution of the robustness 
analysis. 
 
Formally, we designate by Jt=(πt, vt, qt, pt), a selected plausible data set for the 
development of a robust result.  It is necessary to note that Jt is not a data of the problem, 
but the result of an interactive process with the decision-maker [17].  Our robustness 
analysis plan will consider s data sets (J1,…,Js; t=1,…,s) forming a representative subset 
of all the sets of plausible values.  
 
 
6 Conclusion 
 
According to PAMSSEM, the multicriterion method used, the elements for the decision-
maker’s preferences modelling are composed of coefficients of relative importance for 
the attributes/criteria and thresholds (of indifference, preference and veto).  Due to the 
complexity of the military operation context, it is very difficult for the military decision-
makers to determine very precise values for the different coefficients and parameters 
while modelling preferences.  The likelihood of having more than one plausible data set 
for these parameters leads to the possibility to get more that one result of better 
compromise for a single decision-making situation study.  Accordingly, it became a 
requirement for the military decision-makers to have a decision support system that 
provides valid results, despite the difficulty to develop an exact model of the situation.  
Such results, qualified as “robust”, would be less influenced by the imperfection of the 
data occurring in the instantiation of parameters representing decision-maker’s 
preferences during the modeling process of a military situation. Thus, a result will be 



 

considered as “robust” if it is not too far away from or not too contradictory [2] with, 
different results obtained for all the data sets representing plausible values for the 
decision-making model.    
 
This work describes an approach to model all the data sets that instantiate the decision-
maker’s preferences, which are “not so well known”.  It introduces the decision-maker’s 
preferences modelling, and describes the associated coefficients and parameters: 
coefficients of relative importance of the criteria (πj), thresholds of veto (vj(eij)), 
thresholds of indifference (qj(eij)) and thresholds of preferences (pj(eij)).  For each one of 
them, an approach is proposed to identify the different values that should be considered 
in the data sets to model decision-maker’s preferences.  An approach for the 
establishment of these data sets is also proposed.  The data sets are determined by the 
available information.  If the decision-maker, in interaction with the analyst, is able to 
supply a lot of information, all this information has to be used to determine the data sets.  
It is essential that all these sets cover the domain of the possibilities concerning the 
modelling of the decision-maker’s preferences.  When possible, this work considers the 
use of intervals to express the imprecision related to the values put in the model of the 
decision-maker’s preferences, while doing a robustness analysis. 
 
Besides, one can wonder if it is sufficient to consider only the imperfection of 
information at the modelling level of the decision-maker’s preference.  Even if the 
procedure of multicriterion aggregation used in CASAP prototype treats distributional 
evaluations, it is possible that the distributional evaluation of an alternative according to a 
criterion would not be unique.  As proposed by Roy [18], the fuzzy subsets language 
could be used to represent the values badly known by the parameters that are required to 
model preferences.   
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