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Abstract

Defence Research and Development Canada (DRDC) —
Valcartier, with the support of the CRAC Laboratory at
Ecole Polytechnique de Montréal, carried out an ambitious
R&D project aiming at developing a tool called SOCLe
which integrates the design of software applications with
their security. Integrating the design of software applica-
tions and security into a unique tool is not only particu-
larly innovative but also crucial to ensure the quality and
security of critical command and control information sys-
tems. Moreover; as it is 50 to 100 times more expensive to
correct a software error once the design phase is finished,
detecting and correcting errors at design-time saves time
and money. This paper presents the SOCLe project’s major
achievements along with a simplified case study on Caveats,
as an illustrative example of a possible military application
for this new technology.

1. Introduction

It is now generally recognized that the design phase is
crucial to the development of high-quality software. Nowa-
days, software is omnipresent and its faults can involve
enormous social and economic repercussions. Sad exam-
ples abound: the Therac-25 radiotherapy machine (3 dead
and 3 severely wounded persons), the ARIANE 5 rocket
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(approximately 500 million US dollars loss), the breakdown
of AT&T network (approximately 60 million US dollars
loss), etc.! However, programs’ behavior is generally only
validated after their partial or complete implementation, us-
ing various testing techniques. Moreover, it is estimated that
correcting a software error after its implementation is 50 to
100 times more expensive than at design-time [2]. Thus,
there is a real need for design-time validation techniques.

With this objective in mind, Defence Research and De-
velopment Canada (DRDC) — Valcartier initiated a project
to develop a tool that allows the integration of security
within the design of software applications. The idea is an
innovative exploitation of constraints in Unified Modeling
Language (UML) diagrams. These security constraints are
expressed in the Object Constraint Language (OCL), hence
the name Secure OCL expressions (SOCLe). The UML nota-
tion is currently the de facto industrial standard for the de-
sign of object-oriented, modern software. Indeed, it is used
to support software engineering best practices. With UML,
it is possible to specify the structural and behavioral aspects
of software using standardized diagrams. OCL is integrated
into the UML standard and expresses class invariants and
pre/post-conditions on operations. These constraints spec-
ify and clarify the meaning of UML diagrams by precisely
describing the correct model behavior.

The SocCLe project is carried out by a team of student
members of the Conception et Réalisation des Applications
Complexes (CRAC) Laboratory at Ecole Polytechnique de
Montréal, and is directed by professor John Mullins. It
tackles the important problem of design-time validation. In

! According to wikipedia.org and cnn.com.



the first research phase, the SOCLe team compiled an ex-
haustive state-of-the-art study in order to judiciously choose
technologies to be used throughout the project. UML was
essentially selected because of its popularity in the indus-
try. OCL is interesting for several reasons: it is integrated
into the UML standard, it is easy to use, and, especially, it
is possible to give it a precise and unambiguous meaning
and to integrate it into rigorous verification techniques. Re-
search efforts continued thereafter with the formal design
necessary for the implementation of the SOCLe tool. This
implementation phase initially targeted the development of
an automatic verification engine, and then the design of a
graphical user interface for this engine. Considerable ef-
forts were also invested in order to improve the engine’s
performance, which is now adequate.

The rest of this paper is structured as follows. Section
2 discusses similar tools found in the literature. Section 3
presents the general architecture of the SOCLe tool. Section
4 details the simplified case study used throughout this pa-
per: a caveat-separation system. Sections 5, 6, and 7 sketch
the utilization of the tool using this case study. Finally, Sec-
tion 8 presents ongoing improvements to the tool and con-
clusions. Note that some familiarity with UML and OCL is
assumed. The reader is referred to [10] for an introduction
to UML. Details about OCL can be found in [9].

2. Related Work

Few research tools are currently available for static
and/or dynamic validation of UML diagrams. Lilius and
Paltor [8] propose vUML, a tool that translates UML state-
chart diagrams into Promela, the modeling language of the
SPIN model-checker. Constraints are expressed through
Linear Temporal Logic (LTL) and are transmitted to SPIN.
Similarly, Latella et al. [7] give a provably-correct transla-
tion from a subset of UML statechart diagrams into Promela.
None of these approaches, however, have taken OCL into
account.

The toolset proposed by Shen et al. [11] offers static
and dynamic validation. Static checks include: syntactic
correctness according to well-formedness constraints of the
UML meta-model, coherence of an object diagram with re-
spect to a class diagram, and validation of OCL constraints
on an object diagram. The dynamic checks consist of the
verification of statechart diagrams using the SMV model-
checker. However, OCL constraints are not considered by
this model-checker either. Therefore, they are not supported
as a dynamic constraint specification language.

Extensions for OCL constraints are suggested by Diste-
fano et al. [5], using Computational Tree Logic (CTL), and
Bradfield et al. [3], using propositional p-calculus. The
general idea is to replace the atomic properties of these tem-
poral logics by standard OCL constraints. Note, however,

that neither of these frameworks support UML as a design
notation.

3. SocCLe Architecture

SocLe is divided into three main modules:

1. a UML compiler,

2. aspecialized Abstract State Machine (ASM) interpreter
[1], and

3. a model-checker (Figure 1).2

The tool works with UML diagrams expressed in the
XML Metadata Interchange (XMI) format, which is sup-
ported by most UML CASE tools.

The verification process has three phases:

1. translate the UML diagrams into an ASM executable
specification,

2. simulate the execution of the generated specification,
and

3. verify OCL constraints against the resulting execution
graph.

The UML compiler translates UML diagrams to an ASM
according to a formally-defined semantics. Basic diagram
elements, such as classes and method names, are mapped
to sorts (data domains). More complex elements, such as
method declarations and statechart transitions, are trans-
lated into enumerated functions. The object diagram is
mapped to a specific subset of these functions and repre-
sents the initial configuration of the UML diagrams.

The ASM interpreter simulates the execution of the ASM
specification. From an initial configuration, successor con-
figurations are computed by evaluating an ASM program
capturing the dynamic behavior of the UML diagrams.

The model-checker verifies the OCL constraints by trans-
lating them into a set of properties and applying a verifi-
cation algorithm [4]. The result is transmitted back to the
graphical user interface through a set of diagnostic files.

SocLe includes a graphical user interface embedded into
argoUML, a customizable open-source UML CASE tool®. It
allows the designer to visualize verification results and to
inspect the diagrams’ execution graph.

2For the sake of brevity and to respect the scope of this paper, no tech-
nical details are given about the ASM formalism and model-checking tech-
niques.

3http://argouml.tigris.org.
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Figure 1. SocLe Architecture

4. Caveat-Separation System: Simplified Case
Study Specifications

The main objective of the case study is relatively sim-
ple: design and verify a simplified caveat-separation system
based on the following specifications.

4.1. Users

Of course, a caveat-separation system implies the man-
agement of users. In this system, users have the following
attributes:

e A security clearance: “Enhanced”, “Confidential”,
“Secret”, or “Top Secret”.

e A country of origin. For example: “Canada”, “US”,
“UK”, “Germany”, or “Egypt”.
e A military rank: “General”, “Officer”, or “Civilian”.
Except for the country of origin, these attributes can be
modified in time. For instance, one particular user can be
upgraded from “civilian” to “officer” or from “secret” to
“top secret”. It is infrequent for a military rank to be down-
graded but the system should handle this situation for the
sake of completeness. For example, a retired military offi-
cer working as a contractor could be classified civilian for
caveat-evaluation purposes.

4.2. Documents

In this caveat-separation system, users want to access
documents. Documents have the following attributes:

e A classification level: “Unclassified”, “Confidential”,
“Secret”, or “Top Secret”.

e A caveat. For example: “CEO”, “CANUS”,
“CANUSUK?”, “NATO”, “UN Coalition”, or “USUK”.

e An affiliation with a project. For example: “Project
A”, “Project B”, or “Project C”.

Here, all attributes can be modified during the lifespan of
a document, even though certain modifications are unlikely
to happen.

4.3. Access Control Tables

There are three access control tables that dictate who can
access which documents: the classification table (Table 1),
the caveat table (Table 2), and the need-to-know table (Table
3). They are all presented in the following subsections.

4.3.1 Classification Table

Table 1 presents the access relation between the security
clearance of users and the classification level of documents.
Of course, the higher the classification level of a document,
the higher the security clearance required to access it. This



| Classification level / Security clearance | Enhanced | Confidential | Secret | Top Secret |
Unclassified Granted Granted Granted Granted
Confidential Denied Granted Granted Granted
Secret Denied Denied Granted Granted
Top Secret Denied Denied Denied Granted

Table 1. Classification Table

table is not simply an example. It is fixed once and for all
in the caveat-separation system.

4.3.2 Caveat Table

In Table 2, the caveat of the document dictates acceptable
countries of origin for the user who wants to access it. This
table is simply an example. Of course, many other caveats
and countries exist. However, for the purpose of the current
caveat-separation system, it can be considered to be fixed.

4.3.3 Need-to-Know Table

Table 3 determines who, in terms of countries of origin and
military ranks, has the “need-to-know” in order to access
the documents of a particular project. A user must not only
have the proper security clearance and country of origin to
be able to access a document but must also have what is
called the “need-to-know”. In this caveat-separation sys-
tem, it is assumed that this “need-to-know” is attributed on
a per-project basis and is related to a user’s country of ori-
gin and military rank. This table is simply an example and
should not be considered fixed once and for all in the caveat-
separation system. Indeed, new projects could be created,
old projects could be terminated, and entries could be mod-
ified or deleted in time.

4.4. Property to Verify

Finally, the following property must be verified to be
valid in the design of the current caveat-separation system:

At all times, a user can access a document if and
only if the access is granted with respect to the

classification, caveat, and need-to-know tables.

This is particularly essential if the attributes and/or the
need-to-know table are dynamically modified.

5. Caveat-Separation System: UML Design

For any given design in SOCLe, the designer must in-
clude exactly one class diagram, one statechart diagram for

each class defined in the class diagram, and one object dia-
gram. In this section, these diagrams are illustrated through
the modeling of the case study.

5.1. Class Diagram

Figure 2 presents the class diagram of the simplified
caveat-separation system used as a case study. Class
Document models a document in the system with its as-
sociated security level, caveat, and project. Class User
models a user who has access to the system with its as-
sociated security clearance, country of origin, and military
rank (or civilian). Two roles are represented for users:
senders (class Sender) and receivers (class Receiver) of
documents. The class Controller manages accesses to doc-
uments by users. This class accesses the three tables that
dictate which user can access which document. The classes
TableSecret, TableCaveat, and TableProject model the
classification table (Table 1), the caveat table (Table 2), and
the need-to-know table (Table 3), respectively.

In order to be properly handled by the SOCLe tool, the
information contained in these three tables is encoded as
per tables 4, 5,6, 7, 8, and 9.

Unclassified || O
Confidential || 1
Secret 2
Top Secret 3

Table 4. Classification Level Encoding

Enhanced 0
Confidential || 1
Secret 2
Top Secret 3

Table 5. Security Clearance Encoding



| Caveat / Country of origin || Canada | United States | United Kingdom | Germany | Egypt
CEO Granted Denied Denied Denied Denied
CANUS Granted Granted Denied Denied Denied
CANUSUK Granted Granted Granted Denied Denied
NATO Granted Granted Granted Granted Denied
UN Coalition Granted Granted Granted Granted | Granted
USUK Denied Granted Granted Denied Denied
Table 2. Caveat Table
Project / Country of origin || Canada | United States | United Kingdom | Germany | Egypt
A G-0 G-0-C
B G-0-C G-0-C
C G - G-0-C G-0-C
D G-0 G-0-C G-0-C
E G-0-C G-0-C G
F G-0-C G-0
G: General
O: Officer
C: Civilian
Table 3. Need-to-Know Table
CEO 10 Canada 100
CANUS 11 United States 200
CANUSUK 12 United Kingdom | 300
NATO 13 Germany 400
UN Coalition || 14 Egypt 500
USUK 15

Table 6. Caveat Encoding

5.2. Statechart Diagrams

Statechart diagrams are used to define the dynamic be-
havior of each object in the system. Figures 3 and 4
show the statechart diagrams of the Sender and Controller
classes, respectively. Every class must have its statechart in
order for SOCLe to be able to predict its dynamic behavior.
For the sake of brevity, however, all the statecharts are not
presented in this paper.

Notice that the control flow of a statechart is specified by
states and transitions. The basic condition for a transition
to be fired is that its source state is active. Accordingly, the
basic response to firing a transition is the activation of its
target state. In the case of composite states, the initial states
they encompass are also activated. This basic statechart se-

Table 7. Country of Origin Encoding

mantics is adapted from Harel’s statecharts [6].

In addition, transitions are labeled with a trigger, a guard,
and a list of actions. Triggers refer to signals (atomic
events), method calls, or method returns. For example,
the list of actions of a transition labeled with trigger inc
(for incrementation) will execute that method’s instructions.
Guards are boolean OCL constraints. OCL constraints are
presented in Section 6. SOCLe supports the following
actions: method call/return, field assignment, object cre-
ation/deletion, and signal emission.

5.3. Object Diagram

The object diagram is used to define the initial state of
all objects in the system. In other words, it gives the ini-
tial configuration of the system. Figure 5 shows a possible
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Table 8. Project Encoding

General || 99
Officer 88
Civilian || 77

Table 9. Rank Encoding

object diagram for the caveat-separation system.

This diagram models a system composed of a user who
can send a document to another user via a controller. Using
Tables 1, 2, and 3, the latter determines if the receiver can
have access to the document.

6. OCL Constraints

The syntax of an OCL constraint c is defined as follows:
¢ u= v|x|AcdeciAcale. fley iterate(zy; xa = ca|c3)

It includes a significant fragment of OCL constraints as
defined in [9]. Symbols v and x denote values and vari-
ables, respectively. Values include booleans, integers, ob-
ject names, and lists. Construct Ac (¢;Acs) stands for the
application of any of the usual unary (binary) operators on
booleans, integers, and lists. Construct c. f returns the value
that field f takes in the object c. The semantics of these
constructs is formally defined as follows:

[v], = v
[z], = p(2)
[Ac, = A,
[[CIACZ]]/J = [[Cl]]pA[[Q]]p

[er-fl, = heap([erly, £)

The application p(x) retrieves the value of variable x in
the variable environment p. The application heap([ci],, f)
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fetches the value of field f according to the ASM function
heap, defined by the UML compiler.

The iterate construct is OCL’s main collection opera-
tor. Informally, it iterates variable x; through the values of
the collection denoted by c1, stores the successive values of
c3 1n variable x5 (which first evaluates to ¢;), and returns
the final value of x5. The formal semantics of this con-
struct is simply too complex for the scope of this paper. It
is, however, quite expressive and this is why it is used to en-
code additional collection operators, that are supported by
SocLe. Figure 6 illustrates some of them.

7. Caveat-Separation System: An OCL Con-
straint

It is possible to give OCL constraints for each statechart
of the system in order to validate each module separately
but it is even more interesting to define global OCL con-
straints that validate the entire system as a whole. The
OCL constraint defined in Figure 7 is a good example of
such constraint. It ensures that the behavior of the con-
troller is correct. Since the security of the whole sys-
tem depends on the controller, its behavior must be val-
idated. The constraint verifies the three conditions that
must be valid prior to the execution of the operation
access(u : User, d : Document):

1. the security clearance of the user is higher or equal to
the classification level of the document (1),

2. the nationality of the user is compatible with the caveat
of the document (2), and

- ControllerStatechart N

(. AskAcce A
@ @ 2 6%%%%%% %i
; / o
c4 > [ff%fffffj
c5
. /
4 AskSend A
.W €10: %access(u2)/ [ReceiveAccessliser)
cl1:%access(u2)/false/%accessSend(false)
. J
4 ChangeTable N
‘ c14: _ / updateTable() @
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Figure 4. uML Statechart Diagram of the
Controller Class

size : iterate(vi;ve = Olvg + 1)
forall(vy|c) iterate(vy; vo = true|va&ec)
exists(v|c) iterate(vy; v = false|vs|c)

unique(vy |c) iterate(vy; v = false|vs||c)

Figure 6. Additional Collection Operators

3. the military rank of the user is compatible with the doc-
ument project (3) (modeling the need-to-know).

As shown in Figures 8, 9, 10, 11, 12, and 13, SocLe
can automatically verify this constraint for the entire sys-
tem. This ensures the security of its design.

8. Conclusion and Future Work

This paper has presented a tool that integrates the design
of software applications and their security by using OCL
constraints on UML diagrams combined with innovative au-
tomatic verification techniques. Such a tool is of paramount
importance for the design of critical military command and
control information systems because these systems have to
be not only robust but also secure. Moreover, the detection
and correction of errors earlier in the development cycle
saves time and money. Finally, a case study on a caveat-
separation system has been presented in order to illustrate



the capabilities of the SOCLe tool.

A few improvements are currently underway. They es-
sentially consist in translating the UML diagrams into an in-
termediate control flow language before analyzing their be-
havior and using a local model-checking algorithm to drive
the computation of a system’s execution graph. Such im-
provements will facilitate the implementation of various sta-
tic analysis techniques such as slicing and code generation.
They will also reduce memory requirements as some con-
straints could be falsified/verified even tough the execution
graph is only partially computed.
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